
 
 

 

  

Abstract— The problem of static scheduling of independent 
tasks on homogeneous multiprocessor systems is studied in this 
paper.  The problem is solved by the Bee Colony Optimization 
(BCO). The BCO algorithm belongs to the class of stochastic 
swarm optimization methods. The proposed algorithm is 
inspired by the foraging habits of bees in the nature. The BCO 
algorithm was able to obtain the optimal value of objective 
function in all small to medium size test problems. The CPU 
times required to find the best solutions by the BCO are 
acceptable. 

I. INTRODUCTION 

T HE resourceful use of multiprocessor systems highly 

depends on scheduling tasks to be performed on processors. 
The level of service in multiprocessor systems and the 
system's total costs primarily depend on a chosen schedule 
[7]. In this paper, we study the static problem of scheduling 
independent tasks on homogeneous multiprocessor systems. 
The word “static” means that we know in advance the total 
number of tasks, as well as the duration of each task. We 
assume that multiprocessor system contains m identical 
processors. The scheduling of n tasks to processors consists 
in assigning tasks to processors, as well as determining their 
starting times. Even this simple variant of the scheduling 
problem is known to be NP-hard [9]. These problems are 
usually solved by various heuristic algorithms or procedures 
based on meta-heuristic rules.  

The problem of scheduling independent tasks to 
multiprocessor systems is solved in this paper by the Bee 
Colony Optimization [12-14]. The preliminary experimental 
results show that the proposed algorithm can generate high 
quality solutions for randomly generated test examples.  

This paper is organized in the following way. The 
considered scheduling problem is described in Section II. 
Section III contains the description of the Bee Colony 
Optimization meta-heuristics. The Bee Colony Optimization 
for the scheduling problem is given in Section IV. Section V 
contains test results. Conclusion is given in Section VI.  
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II.  THE PROBLEM OF STATIC SCHEDULING OF 
INDEPENDENT TASKS ON HOMOGENEOUS MULTIPROCESSORS 

In this paper we consider the following problem. Let 
{ }nT ,...,2,1=  be a given set of independent tasks, and 

{ }mP ,...2,1=  represents the set of identical processors. We 

denote by l i the a priori known processing time of task i (i = 
1,2,…,n). All tasks are mutually independent and each task 
can be scheduled to any processor. All given tasks must be 
executed. Task should be scheduled to exactly one processor 
and processors can execute one task at a time. Task 
preemption is not allowed. The goal is to find schedule of 
tasks to processors in such a way as to minimize the 
completion time of all tasks (the so called makespan). 

The considered scheduling problem could be graphically 
represented by Gantt diagram (Fig. 1). 
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Fig. 1.  Gantt diagram: Scheduled tasks to processors. 

On the horizontal axis in the diagram given in Fig. 1 we 
measure the time. The white rectangles in the Gantt diagram 
represent tasks. Shaded rectangles are used to denote idle 
time on a processor. The starting time of a task is determined 
by the completion times of all tasks already scheduled to the 
same processor. The total completion time (makespan) for 
the schedule shown in the Fig. 1 equals 40 time units (the 
completion time of task 9 scheduled to processor 3). Any 
schedule that has completion time less than 40 time units is 
considered better. The goal is to find a schedule of tasks to 
processors that has shortest makespan. In order to present 
mathematical programming formulation of the problem, let 
us introduce the binary variables defined in the following 
way:  
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
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The considered scheduling problem can be formulated as 
a linear program in the following way [15]:  

Minimize  

 y  (2) 

subject to  
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 { } mjnix ji ≤≤≤≤∈ 1,1,1,0  (5) 

The objective function that should be minimized 
represents the total completion time of all tasks – makespan 
y. Each task i should be scheduled to one and only one 
potential processor j (constraint (3)). The makespan y is 
computed as the maximum over all processor’s computation 
times, and processing time of a processor is defined as a sum 
of processing times of all tasks scheduled to that processor. 
This is described by the constraints (4). Constraints (5) show 
binary nature of the variables  xij.  

There are several exact algorithms in the literature with 
the goal to solve small to medium size problems to 
optimality [8,15,16]. A lot of approximation algorithms 
(heuristic and meta-heuristic ones) for solving this problem 
have been proposed (for example [6,10,11,17]). Constructive 
heuristic implementing "largest processing time first" rule 
(LPT) proposed in [10] falls into the so called "list 
scheduling" algorithms group. It consists of two steps: 1) 
tasks are sorted in decreasing order of their processing times 
and then 2) each task is assigned to the least loaded 
processor (ties are broken by the minimal index of task 
and/or processor). MultiFit algorithm [6] uses the fact that 
this scheduling problem can be formulated as the bin packing 
problem and produces better results than the LPT algorithm 
but with increasing in the computational complexity. The 
Tabu Search approach has been proposed in [17] and has 
also been used in [16] to improve the performance of an 
exact algorithm. 

 

III.  BEE COLONY OPTIMIZATION  

The Bee Colony Optimization (BCO) is a meta-heuristic 
for solving combinatorial optimization problems. The BCO 
algorithm belongs to the class of stochastic swarm 
optimization methods. The proposed algorithm is inspired by 
the foraging habits of bees in the nature. The communication 
systems between individual insects contribute to the 
configuration of the ‘‘collective intelligence” of the social 
insect colonies. The term ‘‘Swarm intelligence”, that denotes 
this ‘‘collective intelligence” has come into use [1], [2], [3], 
[4]. Swarm intelligence [4] is the part of Artificial 
intelligence based on studying actions of individuals in 
various decentralized systems.  

The BCO is inspired by bees' behavior in the nature. The 
basic idea behind the BCO is to create the multi agent system 
(colony of artificial bees) capable to successfully solve 
difficult combinatorial optimization problems. The artificial 
bee colony behaves partially alike, and partially differently 
from bee colonies in nature. We will first describe the 
behavior of bees in nature, then give a short summary of a 
general Bee Colony Optimization algorithm and afterwards, 
in the next section, we introduce and describe in details the 
algorithm developed for the considered scheduling problem. 

A. Bees in the Nature 

In spite of the existence of a large number of different social 
insect species, and variation in their behavioral patterns, it is 
possible to describe individual insects’ as capable of 
performing a variety of complex tasks [5]. The best example 
is the collection and processing of nectar, the practice of 
which is highly organized. Each bee decides to reach the 
nectar source by following a nestmate who has already 
discovered a patch of flowers. Each hive has a so-called 
dance floor area on which the bees that have discovered 
nectar sources dance, in that way trying to convince their 
nestmates to follow them. If a bee decides to leave the hive 
to get nectar, it follows one of the bee dancers to one of the 
nectar areas. Upon arrival, the foraging bee takes a load of 
nectar and returns to the hive relinquishing the nectar to a 
food store. After it relinquishes the food, the bee can (a) 
abandon the food source and become again uncommitted 
follower, (b) continue to forage at the food source without 
recruiting the nestmates, or (c) dance and thus recruit the 
nestmates before the return to the food source. The bee opts 
for one of the above alternatives with a certain probability. 
Within the dance area, the bee dancers “advertise” different 
food sources.  

B. BCO Algorithm 

Lučić and Teodorović [12-14] were first who used basic 
principles of collective bee intelligence in solving 
combinatorial optimization problems. The BCO is a 
population based algorithm. Population of the artificial bees 
searches for the optimal solution. Every artificial bee 
generates one solution to the problem. The algorithm 
consists of two alternating phases: forward pass and 
backward pass. During each forward pass, every bee is 
exploring the search space. It applies a predefined number of 
moves, which construct and/or improve the solution, yielding 
to a new solution.  

Having obtained new partial solutions, the bees return to 
the hive and start the second phase, the so-called backward 
pass. During the backward pass, all bees share information 
about their solutions. In nature, bees would perform a 
dancing ritual, which would inform other bees about the 
amount of food they have found, and the proximity of the 
patch to the hive. In the search algorithm, the bees announce 
the quality of the solution, i.e. the value of objective 
function. During the backward pass, every bee decides with a 
certain probability whether it will advertise its solution or 
not. The bees with better solutions have more chances to 



 
 

 

advertise their solutions. The remaining bees have to decide 
whether to continue to explore their own solution in the next 
forward pass, or to start exploring the neighborhood of one 
of the solutions being advertised. Similarly, this decision is 
taken with a probability, and therefore better solutions have 
higher probability of being chosen for exploration. 

The two phases of the search algorithm, forward and 
backward pass, are performed iteratively, until a stopping 
condition is met. The possible stopping conditions could be, 
for example, the maximum total number of 
forward/backward passes, the maximum total number of 
forward/backward passes without the improvement of the 
objective function, etc. 

The BCO algorithm parameters whose values need to be 
set prior the algorithm execution are as follows: 

B -  The number of bees in the hive; 

NC - The number of constructive moves during one 
forward pass. 

At the beginning of search process, all bees are in the 
hive. The following is the pseudo code of the BCO 
algorithm: 

1. Initialization: every bee is set to an empty solution; 

2. For every bee do the forward pass: 

a) Set k = 1; //counter for constructive moves  
//in the forward pass; 

b) Evaluate all possible constructive moves;  

c) According to evaluation, choose one move 
using the roulette wheel; 

d) k = k + 1; If k ≤ NC  Go To step b; 

3. All bees are back to the hive; // backward pass 
starts; 

4. Sort the bees by their objective function value;  

5. Every bee decides randomly whether to continue its 
own exploration and become a recruiter, or to 
become a follower (bees with higher objective 
function value have greater chance to continue its 
own exploration); 

6. For every follower, choose a new solution from 
recruiters by the roulette wheel; 

7. If the stopping condition is not met Go To step 2; 

8. Output the best result. 

 

IV.  THE BCO APPROACH TO SCHEDULING PROBLEM  

In this paper, we propose the BCO heuristic algorithm 
tailored for problem of scheduling tasks on homogeneous 
processors. As of the authors’ knowledge this is the first 
implementation of Swarm intelligence to a given problem. 

At the beginning of a scheduling process, we assume that 
all bees are in the hive. The hive is an artificial location, it is 

not connected either to processors or to the tasks. We allow 
every artificial bee to fly out from the hive and to generate 
NC constructive moves. After that, every bee returns to the 
hive. Bees exchange information about the quality of the 
partial solutions generated. After obtaining full information 
about all partial solutions generated by all bees, every bee 
decides whether to abandon its partial solution and become 
again uncommitted follower, or dance and thus recruit the 
nestmates before flying again from the hive.  

A. Constructive moves in forward pass 

Each constructive move in the forward pass consists of 
choosing a task-processor pair. Following the idea of LPT 
algorithm [10], that it is better to choose longer tasks first 
and then use the shorter ones to refine the schedule, we set 
up pi (the probability that specific bee chooses task i) to:  
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where: 
 

l i  - processing time of the i-th task; 

K  - the number of  “free” tasks (not previously chosen). 

Obviously, tasks with a higher processing time have a 
higher chance to be chosen. Using relation (6) and a random 
number generator, we determine a task to be chosen by each 
bee. 

Ones the task to be scheduled is selected corresponding 
processor should be chosen. Since our goal is to minimize 
maximum (over all processors) running time it is obvious 
that processors with a lower value of the current running 
times should have a higher chances to be chosen. Let us 
denote by pj the probability that specific bee chooses 
processor j. We assume that the probability of choosing 
processor j equals: 
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and:  

Fj - running time of processor j based on tasks already 
scheduled to it; 

max F- maximum over all processors running times 
(based on already scheduled tasks);   

min F - minimum over all processors running times 
(based on already scheduled tasks). 

Therefore, Vj represents normalized value for the running 
time of corresponding processor. Using relation (7) and a 



 
 

 

random number generator, we select a processor for 
previously chosen task.  

Within a single forward pass, each bee has to determine 
NC task-processor pairs. In total, B bees choose B*NC task-
processor pairs after each forward pass. When scheduling 
tasks to processors is done for all pairs within a single 
forward pass, we update processors’ running times and start 
the backward pass.  

B. Bee’s partial solutions comparison mechanism 

All bees return to the hive after generating the partial 
solutions. All these solutions are then evaluated by all bees. 
(The latest time point of finishing the last task at any 
processor characterizes every generated partial solution).  

Let us denote by Cb (b=1, 2,..., B)  the latest time point of 
finishing the last task at any processor in the partial solution 
generated by the b-th bee. We denote by Ob normalized 
value of the time point Cb, i.e.: 

 Bb
CC

CC
O b

b ,...,2,1,
minmax

max =
−
−=  (9) 

 

where Cmin and Cmax are respectively the smallest and the 
largest time point among all time points produced by all 
bees. The probability that b-th bee (at the beginning of the 
new forward pass) is loyal to the previously discovered 
partial solution is calculated in this paper in the following 
way:  

 Bbep u
bOO

u
b ,...,2,1,

max
1 ==

−
−+  (10) 

 

where u is the ordinary number of the forward pass.  

Using relation (10) and a random number generator, 
every artificial bee decides to become uncommitted follower, 
or to continue flight along already known path (Fig. 2).   

Let us discuss relation (10) that we propose in a more 
details. The better the generated partial solution (higher Ob 
value), the higher the probability that the bee will be loyal to 
the previously discovered partial solution. The greater the 
ordinary number of the forward pass, the higher the influence 
of the already discovered partial solution. This is expressed 
by the term u in the nominator of the exponent (relation 
(10)). In other words, at the beginning of the search process 
bees are “more brave” to search the solution space. The more 
forward passes they make, the bees have less courage to 
explore the solution space. The more we are approaching the 
end of the search process, the more focused the bees are on 
the already known solutions. 
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Fig. 2. Comparison of partial solutions after third forward pass, NC=1. 
 

C. Recruiting Process 

In the case when at the beginning of a new stage bee does 
not want to expand previously generated partial solution, the 
bee will go to the dancing area and will follow another bee 
(Fig. 3). 
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Fig. 3.  Recruiting of uncommitted followers. 

Within the dance area the bee-dancers (recruiters) 
“advertise” different partial solutions. We have assumed in 
this paper that the probability the recruiter b’s partial 
solution will be chosen by any uncommitted bee equals:  
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where: 
 
Ok  - objective function value of the k-th advertised solution; 

R - the number of recruiters. 



 
 

 

Using relation (11) and a random number generator, 
every uncommitted follower join one bee dancer (recruiter). 
Recruiters fly together with a recruted nestmates in the next 
forward pass along the path discovered by the recruiter. At 
the end of this path all bees are free to independently search 
the solution space and generate the next iteration 
constructive moves. 

V. TEST PROBLEMS 

The proposed algorithm was tested on a various test 
problems. We denote respectively by NT and NP the number 
of tasks and the number of processors. The problem 
parameters range from instances with NT = 10 up to the 
instances with NT= 100. In all cases we set NP = 4. The 
BCO algorithm parameters are set to the following values: 
The total number of bees B engaged in the search process 
was equal to 10; NC - the number of moves (generated task-
processor pairs) during one forward pass was equal to 1; the 
number of iterations I within one run was equal to 100. 

Test problems are generated using the random task graph 
generators proposed in [7]. We compared the obtained BCO 
results with the optimal solution. The comparison results are 
shown in the Tables I, II, III, IV and V. Within all tables, 
BCO represents objective function value obtained by the 
BCO algorithm; OPT denotes the optimal makespan 
obtained by using ILOG AMPL and CPLEX 11.2 
optimization software; CPU time shows the time required by 
BCO algorithm to obtain the optimal solution; I stands for 
the number of iteration until optimal solution was reached. 

TABLE I 
THE COMPARISON OF THE BCO RESULTS WITH OBJECTIVE FUNCTION 

OPTIMAL VALUES FOR SMALL SIZE PROBLEMS (NT=10 AND NT=20, NP=4) 
Test problem 

 
BCO OPT BCO time (sec) I 

It10_1 34 34 0.1629 2 
It10_2 36 36 0.1757 4 
It10_3 33 33 0.1482 1 
It10_4 30 30 0.1692 3 
It10_5 27 27 0.1687 2 
It20_1 69 69 0.2439 7 
It20_2 70 70 0.2101 4 
It20_3 73 73 0.2415 6 
It20_4 70 70 0.2983 10 
It20_5 63 63 0.2135 3 

 
TABLE II 

THE COMPARISON OF THE BCO RESULTS WITH OBJECTIVE FUNCTION 

OPTIMAL VALUES FOR SMALL SIZE PROBLEMS (NT=30 AND  NP=4) 
Test problem BCO OPT BCO time (sec) I 

 
It30_1 128 128 0.5332 10 
It30_2 152 152 0.4736 10 
It30_3 154 154 0.4266 5 
It30_4 159 159 0.4018 9 
It30_5 132 132 0.1709 1 
It30_6 148 148 0.6379 10 
It30_7 157 157 0.3158 6 
It30_8 168 168 0.1811 1 
It30_9 141 141 0.3339 7 
It30_10 180 180 2.8587 64 
It30_11 155 155 0.2821 3 
It30_12 151 151 0.7191 18 
It30_13 170 170 0.2173 2 
It30_14 140 140 0.2479 3 

TABLE III 
THE COMPARISON OF THE BCO RESULTS WITH OBJECTIVE FUNCTION 

OPTIMAL VALUES FOR SMALL SIZE PROBLEMS (NT=40 AND  NP=4) 
Test problem BCO OPT BCO time (sec) I 

 
It40_1 211 211 0.6525 9 
It40_2 226 226 0.2156 2 
It40_3 205 205 0.1972 1 
It40_4 206 206 0.3729 5 
It40_5 182 182 0.2189 2 
It40_6 198 198 0.3799 3 
It40_7 169 169 0.2733 2 
It40_8 201 201 0.3163 3 
It40_9 235 235 0.3325 4 
It40_10 210 210 0.6283 8 
It40_11 229 229 0.3020 5 
It40_12 204 204 0.5392 7 
It40_13 201 201 0.5023 8 
It40_14 153 153 0.6017 5 

 
TABLE IV 

THE COMPARISON OF THE BCO RESULTS WITH OBJECTIVE FUNCTION 

OPTIMAL VALUES FOR MEDIUM SIZE PROBLEMS (NT=50 AND  NP=4) 
Test problem BCO OPT BCO time (sec) I 

 
It50 70 212 212 1.0776 5 
It50 80 196 196 0.5637 1 

It50 80_1 234 234 1.1848 4 
It50 80_2 337 337 1.7368 8 
It50 80_3 216 216 0.8077 3 
It50 80_4 276 276 0.7472 2 
It50 80_5 128 128 0.8814 4 
It50 80_6 167 167 1.8514 8 

 
TABLE V 

THE COMPARISON OF THE BCO RESULTS WITH OBJECTIVE FUNCTION 

OPTIMAL VALUES FOR MEDIUM SIZE PROBLEMS (NT=1000 AND  NP=4) 
Test problem BCO OPT BCO time (sec) 

 
I 

It100_40_1 493 493 3.8002 11 
It100_40_2 782 782 4.9475 8 
It100_40_3 478 478 2.7898 6 
It100_40_4 483 483 1.7391 5 
It100_40_5 271 271 0.6710 1 
It100_40_6 340 340 1.1896 2 
It100_50_1 471 471 1.5869 3 
It100_60_1 465 465 1.9314 3 
 

The proposed BCO algorithm was able to obtain the 
optimal value of objective function in all test problems. The 
CPU times required to find the best solutions by the BCO are 
acceptable. In other words, the BCO was able to produce 
optimal solutions within very small number of iteration. We 
expect that our implementation will produce high quality 
solutions for large size problems, too. All the tests were 
performed on AMD Sempron (tm) Processor with 1.60 GHz 
and 512 MB of RAM under Windows OS.  

 
VI.  CONCLUSION 

The Bee Colony Optimization (BCO) has been 
successfully applied to the problem of static scheduling of 
independent tasks on homogeneous multiprocessor systems. 
The preliminary results show that BCO was able to obtain 
optimal solution for all tested randomly generated small to 



 
 

 

medium size examples. We expect that our implementation 
will produce high quality solutions for large size problems, 
too. The proposed approach probably represents good 
addition to the existing meta-heuristic approaches dealing 
with the scheduling problem.  

There are no theoretical results at the moment that could 
support proposed approach. Usually, development of various 
meta-heuristic was based on experimental work in initial 
stage. Good experimental results than motivate researchers 
to try to produce some theoretical background. The concept 
proposed in this paper is not exception in this sense. 
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