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Abstract— The problem of static scheduling of independent
tasks on homogeneous multiprocessor systems is dediin this
paper. The problem is solved by the Bee Colony Optization
(BCO). The BCO algorithm belongs to the class of sthastic
swarm optimization methods. The proposed algorithmis
inspired by the foraging habits of bees in the nae. The BCO
algorithm was able to obtain the optimal value of bjective
function in all small to medium size test problemsThe CPU
times required to find the best solutions by the BO are
acceptable.

I. INTRODUCTION

Il. THE PROBLEM OFSTATIC SCHEDULING OF
INDEPENDENTTASKS ONHOMOGENEOUSMULTIPROCESSORS

In this paper we consider the following problemt Le
T ={12...,n} be a given set of independent tasks, and

P:{lZ..m} represents the set of identical processors. We

denote by thea priori known processing time of tasKi =
1,2,...n). All tasks are mutually independent and each task
can be scheduled to any processor. All given taskst be
executed. Task should be scheduled to exactly oeepsor

and processors can execute one task at a time. Task
preemption is not allowed. The goal is to find shiie of
tasks to processors in such a way as to minimize th

HE resourceful use of multiprocessor systems highlgompletion time of all tasks (the so call®adkespahn

depends on scheduling tasks to be performed oregsocs.
The level of service in multiprocessor systems dne
system's total costs primarily depend on a choséedle
[7]. In this paper, we study the static problensofieduling
independent tasks on homogeneous multiprocesstansys
The word “static” means that we know in advancettital
number of tasks, as well as the duration of eash. té/e
assume that multiprocessor system contaimsidentical

processors. The scheduling rotasks to processors consists

in assigning tasks to processors, as well as datggntheir
starting times. Even this simple variant of the eshiling
problem is known to be NP-hard [9]. These problers
usually solved by various heuristic algorithms cogedures
based on meta-heuristic rules.

The problem of scheduling independent tasks
multiprocessor systems is solved in this paper Hzy Bee
Colony Optimization [12-14]. The preliminary expegntal
results show that the proposed algorithm can gémdrigh
quality solutions for randomly generated test exasp

The considered scheduling problem could be graphica
represented by Gantt diagram (Fig. 1).
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Fig. 1. Gantt diagram: Scheduled tasks to processo

On the horizontal axis in the diagram given in Rigwve
measure the time. The white rectangles in the Ghatfram
represent tasks. Shaded rectangles are used tdediei®

This paper is organized in the following way. Theime on a processor. The starting time of a tasketsermined

considered scheduling problem is described in Sechi.
Section Il contains the description of the Bee dbgl
Optimization meta-heuristics. The Bee Colony Opation
for the scheduling problem is given in Section 8éction V
contains test results. Conclusion is given in $ectil.

Tatjana Davidovd is with the Mathematical Institute of SASA,
Belgrade, Serbia; tanjad@mi.sanu.ac.rs.

Milica Selmi and Dusan Teodoraviare with the Faculty of Transport
and Traffic Engineering, Belgrade, Serbia; m.sef@it.bg.ac.rs,
dusan@sf.bg.ac.rs.

by the completion times of all tasks already schedito the
same processor. The total completion time (makesfman
the schedule shown in the Fig. 1 equals 40 timéstihe
completion time of task 9 scheduled to processorABy
schedule that has completion time less than 40 tinies is
considered better. The goal is to find a schedfifagks to
processors that has shortest makespan. In ordpresent
mathematical programming formulation of the prohldet
us introduce the binary variables defined in thibofang
way:

1,
0,

if task i is scheduled to processor j, (1)
otherwise.



The considered scheduling problem can be formulased
a linear program in the following way [15]:

Minimize
y (2)
subject to
m
Zm =1, 1<i<n (3)
i=1
n
y_ZhXijZO 1SjSm (4)
i=1
x;0{og, 1sisn,1<jsm (5)

The objective function that should be minimize
represents the total completion time of all taskaakespan

y. Each taski should be scheduled to one and only on

potential processoj (constraint (3)). The makespanis

computed as the maximum over all processor’s coatiout
times, and processing time of a processor is deéfgea sum
of processing times of all tasks scheduled to pihatessor.
This is described by the constraints (4). Constsai) show
binary nature of the variables.

There are several exact algorithms in the liteeatith
the goal to solve small to medium size problems
optimality [8,15,16]. A lot of approximation algtiims
(heuristic and meta-heuristic ones) for solving throblem
have been proposed (for example [6,10,11,17]). Cactsve
heuristic implementing "largest processing timestfirrule
(LPT) proposed in [10] falls into the so called stli
scheduling” algorithms group. It consists of twepst 1)
tasks are sorted in decreasing order of their zi0g times

The BCO is inspired by bees' behavior in the naflhe
basic idea behind the BCO is to create the muéthagystem
(colony of artificial bees) capable to successfuliglve
difficult combinatorial optimization problems. Tlzetificial
bee colony behaves partially alike, and partiaiffecently
from bee colonies in nature. We will first descritiee
behavior of bees in nature, then give a short suymmaa
general Bee Colony Optimization algorithm and afnds,
in the next section, we introduce and describeeiaits the
algorithm developed for the considered scheduliodplem.

A. Bees in the Nature

In spite of the existence of a large number ofedéht social
insect species, and variation in their behavioedteguns, it is

Goossible to describe individual insects’ as capabfe

performing a variety of complex tasks [Fhe best example
'g the collection and processing of nectar, thectpra of
which is highly organized. Each bee decides to lrethe
nectar source by following a nestmate who has djrea
discovered a patch of flowers. Each hive has aaflee
dance floor area on which the bees that have disedv
nectar sources dance, in that way trying to corvitieir
nestmates to follow them. If a bee decides to ld¢heehive
to get nectar, it follows one of the bee dancersre of the
nectar areas. Upon arrival, the foraging bee takésad of

tnectar and returns to the hive relinquishing thetareto a

food store. After it relinquishes the food, the bmmn (a)
abandon the food source and become again uncordmitte
follower, (b) continue to forage at the food souvaéhout
recruiting the nestmates, or (c¢) dance and thusiitethe
nestmates before the return to the food source.bE&keopts
for one of the above alternatives with a certaiobpbility.
Within the dance area, the bee dancers “advertig&rent

and then 2) each task is assigned to the leastedbadood sources.

processor (ties are broken by the minimal indextask

and/or processor). MultiFit algorithm [6] uses tiaet that

this scheduling problem can be formulated as thepbtking

problem and produces better results than the LB®ri#hm

but with increasing in the computational complexifyhe

Tabu Search approach has been proposed in [17hasd
also been used in [16] to improve the performantearo

exact algorithm.

The Bee Colony Optimization (BCO) is a meta-heigrist
for solving combinatorial optimization problems.erBCO

BEE COLONY OPTIMIZATION

B. BCO Algorithm

Luci¢ and Teodorovi [12-14] were first who used basic
principles of collective bee intelligence in solgin
combinatorial optimization problems. The BCO is a
population based algorithm. Population of #réficial bees
searches for the optimal solution. Every artificinbe
generates one solution to the problem. The algarith
consists of two alternating phaseforward pass and
backward passDuring each forward pass, every bee is
exploring the search space. It applies a predefimmaber of
moves, which construct and/or improve the solutigelding
to a new solution.

algorithm belongs to the class of stochastic swarm Having obtained new partial solutions, the beesrneto

optimization methods. The proposed algorithm ipiesl by
the foraging habits of bees in the nature. The comication
systems between individual
configuration of the “collective intelligence” ahe social
insect colonies. The term “Swarm intelligenceattienotes
this “collective intelligence” has come into usH,[[2], [3],

[4]. Swarm intelligence [4] is the part of Artifai

intelligence based on studying actions of individua

various decentralized systems.

the hive and start the second phase, the so-cadlekiward
pass. During the backward pass, all bees sharemaf®mn

insects contribute te ttabout their solutions. In nature, bees would penfoa

dancing ritual, which would inform other bees abdi
amount of food they have found, and the proximitytte
patch to the hive. In the search algorithm, thestseounce
the quality of the solution, i.e. the value of dlijee
function. During the backward pass, every bee dscidth a
certain probability whether it will advertise itelstion or
not. The bees with better solutions have more dwmro



advertise their solutions. The remaining bees hawdecide not connected either to processors or to the tadksallow
whether to continue to explore their own solutioritie next every artificial bee to fly out from the hive ana generate
forward pass, or to start exploring the neighbothobone NC constructive moves. After that, every bee retumshe
of the solutions being advertised. Similarly, tHicision is  hjve. Bees exchange information about the qualftythe
taken with a probability, and therefore better 8ohs have partial solutions generated. After obtaining fulfdrmation
higher probability of being chosen for exploration. about all partial solutions generated by all beagry bee

The two phases of the search algorithm, forward arfiecides whether to abandon its partial solution la@cbme
backward pass, are performédratively, until a stopping again uncommitted follower, or dance and thus rie¢he
condition is met. The possible stopping conditionsald be, nestmates before flying again from the hive.
for example, the maximum total number ofA Constructive moves in forward pass
forward/backward passes, the maximum total numier o~ _ ) b )
forward/backward passes without the improvementhef Each constructive move in the forward pass consits
objective function, etc. choosing a task-processor pair. Following the ideaPT

i algorithm [10], that it is better to choose longasks first

The BCO algorithm parameters whose values neee to Rnd then use the shorter ones to refine the sahedhel set

set prior the algorithm execution are as follows: up p; (the probability that specific bee chooses ijs&:
B - The number of bees in the hive; I
|

. . . =——, i=1,2...,n 6

NC - The number of constructive moves during one =% =1.2 ©)
forward pass. Z|k
k=1

At the beginning of search process, all bees arthén here:
hive. The following is the pseudo code of the Bca' '

algorithm: |; - processing time of theth task;

1. Initialization: every bee is set to an empty salofi

K -the number of “free” tasks (not previously shn).
2. For every bee do the forward pass:

_ . Obviously, tasks with a higher processing time have
a) Setk = 1; //counter for constructive moveshigher chance to be chosen. Using relation (6)arendom

/lin the forward pass; number generator, we determine a task to be chogeach
b) Evaluate all possible constructive moves; bee.

using the roulette wheel: processor should be chosen. Since our goal is iinmizie
maximum (over all processors) running time it isviobs
d) k=k+1;I1fk<NC Go To step b; that processors with a lower value of the curremning
3. All bees are back to the hive; / backward pasimes should have a higher chances to be chosénud.e
starts: denote byp the probability that specific bee chooses
processorj. We assume that the probability of choosing
Sort the bees by their objective function value; processoj equals:
Every bee decides randomly whether to continue its V.
own exploration and become a recruiter, or to p;= mJ , J=1,2,...m (7
become a follower (bees with higher objective ZV
function value have greater chance to continue its a1 k
own exploration); -
where:
6. For every follower, choose a new solution from
recruiters by the roulette wheel, maxF - F .
. L Viz— 1 j=1,2,..m (8)
If the stopping condition is not met Go To step 2; ' maxF -minF
and:

8. Output the best result.

F;j - running time of processgrbased on tasks already
scheduled to it;

IV. THE BCOAPPROACH TOSCHEDULING PROBLEM . . .
max F- maximum over all processors running times

In this paper, we propose the BCO heuristic algarit (based on already scheduled tasks);
tailored for problem of scheduling tasks on homegers
processors. As of the authors’ knowledge this s finst
implementation of Swarm intelligence to a givenigeon.

min F - minimum over all processors running times
(based on already scheduled tasks).

Therefore V| represents normalized value for the running

Atthe beginning of a scheduling process, we asshate time of corresponding processor. Using relation gAYl a

all bees are in the hive. The hive is an artifitdalation, it is



random number generator, we select a processor for
previously chosen task.

Within a single forward pass, each bee has to ohater

NC task-processor pairs. In toté,bees choosB*NC task- /
processor pairs after each forward pass. When sthgd &
tasks to processors is done for all pairs withirsigle
forward pass, we update processors’ running timelsssart
the backward pass.

B. Bee's partial solutions comparison mechanism

All bees return to the hive after generating thetigia
solutions. All these solutions are then evaluatg@lbbees.

Processors
(The latest time point of finishing the last task any
processor characterizes every generated partisico). o N |
_ i i '
_ _Le_t us denote b, (b=1, 2,...,B) the Igtest t_|me pomt of DL &RND & RND ;o RND
finishing the last task at any processor in theiglasolution | }
generated by thd»-th bee. We denote b, normalized & & o &
value of the time point,, i.e.: LOYAL UNCOMMITTED LOYAL
q):M, b=12...B (9) _ _ _ _ '
Cmax - Cmin Fig. 2. Comparison of partial solutions after third forwgrass NC=1.

. C. Recruiting Process
where Ci, and C,,,x are respectively the smallest and the o
largest time point among all time points produced ali In the case when at the beginning of a new stageibes
bees. The probability thatth bee (at the beginning of the not want to expand previously generated partialtsni, the
new forward pass) is loyal to the previously dismed bee will go to the dancing area and will follow #ver bee
partial solution is calculated in this paper in folowing (Fig. 3).
way:

_Omax~ Op
pitl=e u . p=12..B (10)

whereu is the ordinary number of the forward pass.

Using relation (10) and a random number generator,
every artificial bee decides to become uncommifbddwer,
or to continue flight along already known path (FA}

Let us discuss relation (10) that we propose incaem
details. The better the generated partial soluffogher O,
value), the higher the probability that the bed bl loyalto | &> Uncommitied|
the previously discovered partial solution. Theatee the
ordinary number of the forward pass, the higheiinfiaence
of the already discovered partial solution. Thigipressed Fig. 3. Recruiting of uncommitted followers.
by the termu in the nominator of the exponent (relation
(20)). In other words, at the beginning of the skasrocess
bees are “more brave” to search the solution spdoemore
forward passes they make, the bees have less eotag
explore the solution space. The more we are appitogithe
end of the search process, the more focused thedreeon _ O
the already known solutions. P =R

2.0
k=1

Within the dance area the bee-dancers (recruiters)
advertise” different partial solutions. We havesased in
this paper that the probability the recruitbis partial
solution will be chosen by any uncommitted bee &qjua

,b=12.., R (11)

where:

Ok - objective function value of theth advertised solution;

R - the number of recruiters.



Using relation (11) and a random number generator,
every uncommitted follower join one bee dancer r{reer).

TABLE IlI

THE COMPARISON OF THEBCO RESULTS WITH OBJECTIVE FUNCTION
OPTIMAL VALUES FOR SMALL SIZE PROBLEMNT=40AND NP=4)

Recruiters fly together with a recruted nestmatethé next
forward pass along the path discovered by the itecrtAt

the end of this path all bees are free to indepathdsearch

the solution space and generate the next iteration

constructive moves.

V. TESTPROBLEMS

The proposed algorithm was tested on a various tes

problems. We denote respectively Wy andNP the number

of tasks and the number of processors. The problem

parameters range from instances witli = 10 up to the

instances withNT= 100. In all cases we s&P = 4. The

BCO algorithm parameters are set to the followiadues:

The total number of beeB engaged in the search process

was equal to 10NC - the number of moves (generated task-

processor pairs) during one forward pass was dqukl the
number of iterationswithin one run was equal to 100.

Test problem BCO OPT BCO time (sec) |
1t40_1 211 211 0.6525 9
1t40_2 226 226 0.2156 2
1t40_3 205 205 0.1972 1
1t40_4 206 206 0.3729 5
1t40_5 182 182 0.2189 2

;+ 140 _6 198 198 0.3799 3

T 140 7 169 169 0.2733 2
1t40_8 201 201 0.3163 3
1t40_9 235 235 0.3325 4
1t40_10 210 210 0.6283 8
1t40_11 229 229 0.3020 5
1t40_12 204 204 0.5392 7|
[t40_13 201 201 0.5023 8
1t40_14 153 153 0.6017 5

TABLE IV

THE COMPARISON OF THEBCO RESULTS WITH OBJECTIVE FUNCTION

OPTIMAL VALUES FOR MEDIUM SIZE PROBLEMYNT=50AND NP=4)

Test problems are generated using the random tagk g
generators proposed in [7]. We compared the olda3@O

results with the optimal solution. The comparisesults are

shown in the Tables |, II, Ill, IV and V. Within laiables,

BCO represents objective function value obtained thwy

BCO algorithm; OPT denotes the optimal makespar

obtained by using ILOG AMPL and CPLEX 11.2

optimization software; CPU time shows the time reepliby
BCO algorithm to obtain the optimal solution; | reta for

the number of iteration until optimal solution wasched.

TABLE |
THE COMPARISON OF THEBCO RESULTS WITH OBJECTIVE FUNCTION
OPTIMAL VALUES FOR SMALL SIZE PROBLEMNT=10AND NT=20,NP=4)

Test problem BCO OPT BCO time (sec) |
It50 70 212 212 1.0776 5
1t50 80 196 196 0.5637 1

[t50 80_1 234 234 1.1848 4

[t50 80_2 337 337 1.7368 8

[t50 80_3 216 216 0.8077 3

It50 80_4 276 276 0.7472 2

It50 80_5 128 128 0.8814 4

It50 80_6 167 167 1.8514 8
TABLE V

THE COMPARISON OF THEBCO RESULTS WITH OBJECTIVE FUNCTION
OPTIMAL VALUES FOR MEDIUM SIZE PROBLEMYNT=1000AND NP=4)

THE COMPARISON OF THEBCO RESULTS WITH OBJECTIVE FUNCTION
OPTIMAL VALUES FOR SMALL SIZE PROBLEMgNT=30AND NP=4)

Test problem BCO OPT BCO time (sec) |
1t30_1 128 128 0.5332 19
1t30_2 152 152 0.4736 10
1t30_3 154 154 0.4266 5
1t30_4 159 159 0.4018 9
It30_5 132 132 0.1709 1
1t30_6 148 148 0.6379 10
It30_7 157 157 0.3158 6
1t30_8 168 168 0.1811 1
1t30_9 141 141 0.3339 7

1t30_10 180 180 2.8587 64
1t30_11 155 155 0.2821 3
[t30_12 151 151 0.7191 18
1t30_13 170 170 0.2173 2
1t30_14 140 140 0.2479 3

Test problem | BCO OPT BCO time (sec) [ Testproblem | BCO | OPT BCO time (sec) |
[t10 1 34 34 0.1629 2 [t100_40_1 493 493 3.8002 11
[t10 2 36 36 0.1757 4 [t100_40 2 782 782 4.9475 8
1110 3 33 33 0.1482 1 [t100_40_3 478 478 2.7898 6
[t10 4 30 30 0.1692 3 [t100_40 4 483 483 1.7391 5
It10 5 27 27 0.1687 2 It100_40 5 271 271 0.6710 1
120 1 69 69 0.2439 7 [t100_40_6 340 340 1.1896 2
1220 2 70 70 0.2101 4 It100_50_1 471 471 1.5869 3
120 3 73 73 0.2415 6 [t100_60_1 465 465 1.9314 3
[t20_4 70 70 0.2983 10
20 5 63 63 0.2135 3 The proposed BCO algorithm was able to obtain the

TABLE Il optimal value of objective function in all test ptems. The

CPU times required to find the best solutions eyBICO are
acceptable. In other words, the BCO was able tayme
optimal solutions within very small number of itdéoa. We
expect that our implementation will produce highaliy
solutions for large size problems, too. All thetsewere
performed on AMD Sempron (tm) Processor with 1.6@zG
and 512 MB of RAM under Windows OS.

VI. CONCLUSION

The Bee Colony Optimization (BCO) has been
successfully applied to the problem of static sciiag of
independent tasks on homogeneous multiprocesstensys
The preliminary results show that BCO was able hitaim
optimal solution for all tested randomly generaszdall to



medium size examples. We expect that our implentienta
will produce high quality solutions for large sipeoblems,

[8] M. Dell'Amico, and S. Martello, “Optimal schelihg of tasks on
identical parallel processorsQRSA Journal on Computingol. 7, pp.

too. The proposed approach probably represents good 91200 1995

addition to the existing meta-heuristic approactealing
with the scheduling problem.

There are no theoretical results at the momentabald
support proposed approach. Usually, developmewnaabus
meta-heuristic was based on experimental work itiain
stage. Good experimental results than motivatearebers
to try to produce some theoretical background. dtwcept
proposed in this paper is not exception in thiseen
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