

Abstract— The problem of static scheduling of independent
tasks on homogeneous multiprocessor systems is studied in this
paper. The problem is solved by the Bee Colony Optimization
(BCO). The BCO algorithm belongs to the class of stochastic
swarm optimization methods. The proposed algorithm is
inspired by the foraging habits of bees in the nature. The BCO
algorithm was able to obtain the optimal value of objective
function in all small to medium size test problems. The CPU
times required to find the best solutions by the BCO are
acceptable.

I. INTRODUCTION

T HE resourceful use of multiprocessor systems highly

depends on scheduling tasks to be performed on processors.
The level of service in multiprocessor systems and the
system's total costs primarily depend on a chosen schedule
[7]. In this paper, we study the static problem of scheduling
independent tasks on homogeneous multiprocessor systems.
The word “static” means that we know in advance the total
number of tasks, as well as the duration of each task. We
assume that multiprocessor system contains m identical
processors. The scheduling of n tasks to processors consists
in assigning tasks to processors, as well as determining their
starting times. Even this simple variant of the scheduling
problem is known to be NP-hard [9]. These problems are
usually solved by various heuristic algorithms or procedures
based on meta-heuristic rules.

The problem of scheduling independent tasks to
multiprocessor systems is solved in this paper by the Bee
Colony Optimization [12-14]. The preliminary experimental
results show that the proposed algorithm can generate high
quality solutions for randomly generated test examples.

This paper is organized in the following way. The
considered scheduling problem is described in Section II.
Section III contains the description of the Bee Colony
Optimization meta-heuristics. The Bee Colony Optimization
for the scheduling problem is given in Section IV. Section V
contains test results. Conclusion is given in Section VI.

Tatjana Davidović is with the Mathematical Institute of SASA,

Belgrade, Serbia; tanjad@mi.sanu.ac.rs.
Milica Šelmić and Dušan Teodorović are with the Faculty of Transport

and Traffic Engineering, Belgrade, Serbia; m.selmic@sf.bg.ac.rs,
dusan@sf.bg.ac.rs.

II. THE PROBLEM OF STATIC SCHEDULING OF
INDEPENDENT TASKS ON HOMOGENEOUS MULTIPROCESSORS

In this paper we consider the following problem. Let
{ }nT ,...,2,1= be a given set of independent tasks, and

{ }mP ,...2,1= represents the set of identical processors. We

denote by l i the a priori known processing time of task i (i =
1,2,…,n). All tasks are mutually independent and each task
can be scheduled to any processor. All given tasks must be
executed. Task should be scheduled to exactly one processor
and processors can execute one task at a time. Task
preemption is not allowed. The goal is to find schedule of
tasks to processors in such a way as to minimize the
completion time of all tasks (the so called makespan).

The considered scheduling problem could be graphically
represented by Gantt diagram (Fig. 1).

P
ro

ce
ss

or
s

1

2

3

4

t=0 time axis

1

5

8

6

3

2

4

7 10

9

5 10 15 20 25 30 35 40

Fig. 1. Gantt diagram: Scheduled tasks to processors.

On the horizontal axis in the diagram given in Fig. 1 we
measure the time. The white rectangles in the Gantt diagram
represent tasks. Shaded rectangles are used to denote idle
time on a processor. The starting time of a task is determined
by the completion times of all tasks already scheduled to the
same processor. The total completion time (makespan) for
the schedule shown in the Fig. 1 equals 40 time units (the
completion time of task 9 scheduled to processor 3). Any
schedule that has completion time less than 40 time units is
considered better. The goal is to find a schedule of tasks to
processors that has shortest makespan. In order to present
mathematical programming formulation of the problem, let
us introduce the binary variables defined in the following
way:





=
otherwise.,0

,processortoscheduledistaskif,1 ji
x ij

 (1)

Scheduling Independent Tasks: Bee Colony Optimization Approach

Tatjana Davidović, Milica Šelmić, Dušan Teodorović

The considered scheduling problem can be formulated as
a linear program in the following way [15]:

Minimize

 y (2)

subject to

 nix
m

j
ji ≤≤=∑

=

1,1
1

 (3)

 mjxly ij

n

i

i ≤≤≥−∑
=

10
1

 (4)

 { } mjnix ji ≤≤≤≤∈ 1,1,1,0 (5)

The objective function that should be minimized
represents the total completion time of all tasks – makespan
y. Each task i should be scheduled to one and only one
potential processor j (constraint (3)). The makespan y is
computed as the maximum over all processor’s computation
times, and processing time of a processor is defined as a sum
of processing times of all tasks scheduled to that processor.
This is described by the constraints (4). Constraints (5) show
binary nature of the variables xij.

There are several exact algorithms in the literature with
the goal to solve small to medium size problems to
optimality [8,15,16]. A lot of approximation algorithms
(heuristic and meta-heuristic ones) for solving this problem
have been proposed (for example [6,10,11,17]). Constructive
heuristic implementing "largest processing time first" rule
(LPT) proposed in [10] falls into the so called "list
scheduling" algorithms group. It consists of two steps: 1)
tasks are sorted in decreasing order of their processing times
and then 2) each task is assigned to the least loaded
processor (ties are broken by the minimal index of task
and/or processor). MultiFit algorithm [6] uses the fact that
this scheduling problem can be formulated as the bin packing
problem and produces better results than the LPT algorithm
but with increasing in the computational complexity. The
Tabu Search approach has been proposed in [17] and has
also been used in [16] to improve the performance of an
exact algorithm.

III. BEE COLONY OPTIMIZATION

The Bee Colony Optimization (BCO) is a meta-heuristic
for solving combinatorial optimization problems. The BCO
algorithm belongs to the class of stochastic swarm
optimization methods. The proposed algorithm is inspired by
the foraging habits of bees in the nature. The communication
systems between individual insects contribute to the
configuration of the ‘‘collective intelligence” of the social
insect colonies. The term ‘‘Swarm intelligence”, that denotes
this ‘‘collective intelligence” has come into use [1], [2], [3],
[4]. Swarm intelligence [4] is the part of Artificial
intelligence based on studying actions of individuals in
various decentralized systems.

The BCO is inspired by bees' behavior in the nature. The
basic idea behind the BCO is to create the multi agent system
(colony of artificial bees) capable to successfully solve
difficult combinatorial optimization problems. The artificial
bee colony behaves partially alike, and partially differently
from bee colonies in nature. We will first describe the
behavior of bees in nature, then give a short summary of a
general Bee Colony Optimization algorithm and afterwards,
in the next section, we introduce and describe in details the
algorithm developed for the considered scheduling problem.

A. Bees in the Nature

In spite of the existence of a large number of different social
insect species, and variation in their behavioral patterns, it is
possible to describe individual insects’ as capable of
performing a variety of complex tasks [5]. The best example
is the collection and processing of nectar, the practice of
which is highly organized. Each bee decides to reach the
nectar source by following a nestmate who has already
discovered a patch of flowers. Each hive has a so-called
dance floor area on which the bees that have discovered
nectar sources dance, in that way trying to convince their
nestmates to follow them. If a bee decides to leave the hive
to get nectar, it follows one of the bee dancers to one of the
nectar areas. Upon arrival, the foraging bee takes a load of
nectar and returns to the hive relinquishing the nectar to a
food store. After it relinquishes the food, the bee can (a)
abandon the food source and become again uncommitted
follower, (b) continue to forage at the food source without
recruiting the nestmates, or (c) dance and thus recruit the
nestmates before the return to the food source. The bee opts
for one of the above alternatives with a certain probability.
Within the dance area, the bee dancers “advertise” different
food sources.

B. BCO Algorithm

Lučić and Teodorović [12-14] were first who used basic
principles of collective bee intelligence in solving
combinatorial optimization problems. The BCO is a
population based algorithm. Population of the artificial bees
searches for the optimal solution. Every artificial bee
generates one solution to the problem. The algorithm
consists of two alternating phases: forward pass and
backward pass. During each forward pass, every bee is
exploring the search space. It applies a predefined number of
moves, which construct and/or improve the solution, yielding
to a new solution.

Having obtained new partial solutions, the bees return to
the hive and start the second phase, the so-called backward
pass. During the backward pass, all bees share information
about their solutions. In nature, bees would perform a
dancing ritual, which would inform other bees about the
amount of food they have found, and the proximity of the
patch to the hive. In the search algorithm, the bees announce
the quality of the solution, i.e. the value of objective
function. During the backward pass, every bee decides with a
certain probability whether it will advertise its solution or
not. The bees with better solutions have more chances to

advertise their solutions. The remaining bees have to decide
whether to continue to explore their own solution in the next
forward pass, or to start exploring the neighborhood of one
of the solutions being advertised. Similarly, this decision is
taken with a probability, and therefore better solutions have
higher probability of being chosen for exploration.

The two phases of the search algorithm, forward and
backward pass, are performed iteratively, until a stopping
condition is met. The possible stopping conditions could be,
for example, the maximum total number of
forward/backward passes, the maximum total number of
forward/backward passes without the improvement of the
objective function, etc.

The BCO algorithm parameters whose values need to be
set prior the algorithm execution are as follows:

B - The number of bees in the hive;

NC - The number of constructive moves during one
forward pass.

At the beginning of search process, all bees are in the
hive. The following is the pseudo code of the BCO
algorithm:

1. Initialization: every bee is set to an empty solution;

2. For every bee do the forward pass:

a) Set k = 1; //counter for constructive moves
//in the forward pass;

b) Evaluate all possible constructive moves;

c) According to evaluation, choose one move
using the roulette wheel;

d) k = k + 1; If k ≤ NC Go To step b;

3. All bees are back to the hive; // backward pass
starts;

4. Sort the bees by their objective function value;

5. Every bee decides randomly whether to continue its
own exploration and become a recruiter, or to
become a follower (bees with higher objective
function value have greater chance to continue its
own exploration);

6. For every follower, choose a new solution from
recruiters by the roulette wheel;

7. If the stopping condition is not met Go To step 2;

8. Output the best result.

IV. THE BCO APPROACH TO SCHEDULING PROBLEM

In this paper, we propose the BCO heuristic algorithm
tailored for problem of scheduling tasks on homogeneous
processors. As of the authors’ knowledge this is the first
implementation of Swarm intelligence to a given problem.

At the beginning of a scheduling process, we assume that
all bees are in the hive. The hive is an artificial location, it is

not connected either to processors or to the tasks. We allow
every artificial bee to fly out from the hive and to generate
NC constructive moves. After that, every bee returns to the
hive. Bees exchange information about the quality of the
partial solutions generated. After obtaining full information
about all partial solutions generated by all bees, every bee
decides whether to abandon its partial solution and become
again uncommitted follower, or dance and thus recruit the
nestmates before flying again from the hive.

A. Constructive moves in forward pass

Each constructive move in the forward pass consists of
choosing a task-processor pair. Following the idea of LPT
algorithm [10], that it is better to choose longer tasks first
and then use the shorter ones to refine the schedule, we set
up pi (the probability that specific bee chooses task i) to:

∑
=

=
K

k

k

i
i

l

lp

1

, i= 1,2,…,n (6)

where:

l i - processing time of the i-th task;

K - the number of “free” tasks (not previously chosen).

Obviously, tasks with a higher processing time have a
higher chance to be chosen. Using relation (6) and a random
number generator, we determine a task to be chosen by each
bee.

Ones the task to be scheduled is selected corresponding
processor should be chosen. Since our goal is to minimize
maximum (over all processors) running time it is obvious
that processors with a lower value of the current running
times should have a higher chances to be chosen. Let us
denote by pj the probability that specific bee chooses
processor j. We assume that the probability of choosing
processor j equals:

∑
1=

= m

k
k

j
j

V

V
p , j = 1,2,…,m (7)

where:

FF

FF
V

j
j

minmax

max

−
−

= , j = 1,2,…,m (8)

and:

Fj - running time of processor j based on tasks already
scheduled to it;

max F- maximum over all processors running times
(based on already scheduled tasks);

min F - minimum over all processors running times
(based on already scheduled tasks).

Therefore, Vj represents normalized value for the running
time of corresponding processor. Using relation (7) and a

random number generator, we select a processor for
previously chosen task.

Within a single forward pass, each bee has to determine
NC task-processor pairs. In total, B bees choose B*NC task-
processor pairs after each forward pass. When scheduling
tasks to processors is done for all pairs within a single
forward pass, we update processors’ running times and start
the backward pass.

B. Bee’s partial solutions comparison mechanism

All bees return to the hive after generating the partial
solutions. All these solutions are then evaluated by all bees.
(The latest time point of finishing the last task at any
processor characterizes every generated partial solution).

Let us denote by Cb (b=1, 2,..., B) the latest time point of
finishing the last task at any processor in the partial solution
generated by the b-th bee. We denote by Ob normalized
value of the time point Cb, i.e.:

 Bb
CC

CC
O b

b ,...,2,1,
minmax

max =
−
−= (9)

where Cmin and Cmax are respectively the smallest and the
largest time point among all time points produced by all
bees. The probability that b-th bee (at the beginning of the
new forward pass) is loyal to the previously discovered
partial solution is calculated in this paper in the following
way:

 Bbep u
bOO

u
b ,...,2,1,

max
1 ==

−
−+ (10)

where u is the ordinary number of the forward pass.

Using relation (10) and a random number generator,
every artificial bee decides to become uncommitted follower,
or to continue flight along already known path (Fig. 2).

Let us discuss relation (10) that we propose in a more
details. The better the generated partial solution (higher Ob
value), the higher the probability that the bee will be loyal to
the previously discovered partial solution. The greater the
ordinary number of the forward pass, the higher the influence
of the already discovered partial solution. This is expressed
by the term u in the nominator of the exponent (relation
(10)). In other words, at the beginning of the search process
bees are “more brave” to search the solution space. The more
forward passes they make, the bees have less courage to
explore the solution space. The more we are approaching the
end of the search process, the more focused the bees are on
the already known solutions.

1 8

Processors

1

2

3

4

5

7 92 3 4

1 2 3 4
Processors

1 2 3 4
Processors

1 2 3 4

61

2

3

4

5

1

2

3

4

5
time
axis

time
axis

time
axis

 Bee 1

Bee 2

Bee B

5

. . .

. . .

. . .

LOYAL UNCOMMITTED LOYAL

. . .

...

O1 O2 OB

p1 & RND p2 & RND pB & RND

Fig. 2. Comparison of partial solutions after third forward pass, NC=1.

C. Recruiting Process

In the case when at the beginning of a new stage bee does
not want to expand previously generated partial solution, the
bee will go to the dancing area and will follow another bee
(Fig. 3).

Recruiters

Loyal

2

R

1

1

.
.
.

1

2

3

4

B-R-L

5

.

.

.

Uncommitted

2

L3 ...

Fig. 3. Recruiting of uncommitted followers.

Within the dance area the bee-dancers (recruiters)
“advertise” different partial solutions. We have assumed in
this paper that the probability the recruiter b’s partial
solution will be chosen by any uncommitted bee equals:

∑
=

=
R

k

k

b
b

O

Op

1

 , b=1,2,…, R (11)

where:

Ok - objective function value of the k-th advertised solution;

R - the number of recruiters.

Using relation (11) and a random number generator,
every uncommitted follower join one bee dancer (recruiter).
Recruiters fly together with a recruted nestmates in the next
forward pass along the path discovered by the recruiter. At
the end of this path all bees are free to independently search
the solution space and generate the next iteration
constructive moves.

V. TEST PROBLEMS

The proposed algorithm was tested on a various test
problems. We denote respectively by NT and NP the number
of tasks and the number of processors. The problem
parameters range from instances with NT = 10 up to the
instances with NT= 100. In all cases we set NP = 4. The
BCO algorithm parameters are set to the following values:
The total number of bees B engaged in the search process
was equal to 10; NC - the number of moves (generated task-
processor pairs) during one forward pass was equal to 1; the
number of iterations I within one run was equal to 100.

Test problems are generated using the random task graph
generators proposed in [7]. We compared the obtained BCO
results with the optimal solution. The comparison results are
shown in the Tables I, II, III, IV and V. Within all tables,
BCO represents objective function value obtained by the
BCO algorithm; OPT denotes the optimal makespan
obtained by using ILOG AMPL and CPLEX 11.2
optimization software; CPU time shows the time required by
BCO algorithm to obtain the optimal solution; I stands for
the number of iteration until optimal solution was reached.

TABLE I
THE COMPARISON OF THE BCO RESULTS WITH OBJECTIVE FUNCTION

OPTIMAL VALUES FOR SMALL SIZE PROBLEMS (NT=10 AND NT=20, NP=4)
Test problem

BCO OPT BCO time (sec) I

It10_1 34 34 0.1629 2
It10_2 36 36 0.1757 4
It10_3 33 33 0.1482 1
It10_4 30 30 0.1692 3
It10_5 27 27 0.1687 2
It20_1 69 69 0.2439 7
It20_2 70 70 0.2101 4
It20_3 73 73 0.2415 6
It20_4 70 70 0.2983 10
It20_5 63 63 0.2135 3

TABLE II

THE COMPARISON OF THE BCO RESULTS WITH OBJECTIVE FUNCTION

OPTIMAL VALUES FOR SMALL SIZE PROBLEMS (NT=30 AND NP=4)
Test problem BCO OPT BCO time (sec) I

It30_1 128 128 0.5332 10
It30_2 152 152 0.4736 10
It30_3 154 154 0.4266 5
It30_4 159 159 0.4018 9
It30_5 132 132 0.1709 1
It30_6 148 148 0.6379 10
It30_7 157 157 0.3158 6
It30_8 168 168 0.1811 1
It30_9 141 141 0.3339 7
It30_10 180 180 2.8587 64
It30_11 155 155 0.2821 3
It30_12 151 151 0.7191 18
It30_13 170 170 0.2173 2
It30_14 140 140 0.2479 3

TABLE III
THE COMPARISON OF THE BCO RESULTS WITH OBJECTIVE FUNCTION

OPTIMAL VALUES FOR SMALL SIZE PROBLEMS (NT=40 AND NP=4)
Test problem BCO OPT BCO time (sec) I

It40_1 211 211 0.6525 9
It40_2 226 226 0.2156 2
It40_3 205 205 0.1972 1
It40_4 206 206 0.3729 5
It40_5 182 182 0.2189 2
It40_6 198 198 0.3799 3
It40_7 169 169 0.2733 2
It40_8 201 201 0.3163 3
It40_9 235 235 0.3325 4
It40_10 210 210 0.6283 8
It40_11 229 229 0.3020 5
It40_12 204 204 0.5392 7
It40_13 201 201 0.5023 8
It40_14 153 153 0.6017 5

TABLE IV

THE COMPARISON OF THE BCO RESULTS WITH OBJECTIVE FUNCTION

OPTIMAL VALUES FOR MEDIUM SIZE PROBLEMS (NT=50 AND NP=4)
Test problem BCO OPT BCO time (sec) I

It50 70 212 212 1.0776 5
It50 80 196 196 0.5637 1

It50 80_1 234 234 1.1848 4
It50 80_2 337 337 1.7368 8
It50 80_3 216 216 0.8077 3
It50 80_4 276 276 0.7472 2
It50 80_5 128 128 0.8814 4
It50 80_6 167 167 1.8514 8

TABLE V

THE COMPARISON OF THE BCO RESULTS WITH OBJECTIVE FUNCTION

OPTIMAL VALUES FOR MEDIUM SIZE PROBLEMS (NT=1000 AND NP=4)
Test problem BCO OPT BCO time (sec)

I

It100_40_1 493 493 3.8002 11
It100_40_2 782 782 4.9475 8
It100_40_3 478 478 2.7898 6
It100_40_4 483 483 1.7391 5
It100_40_5 271 271 0.6710 1
It100_40_6 340 340 1.1896 2
It100_50_1 471 471 1.5869 3
It100_60_1 465 465 1.9314 3

The proposed BCO algorithm was able to obtain the
optimal value of objective function in all test problems. The
CPU times required to find the best solutions by the BCO are
acceptable. In other words, the BCO was able to produce
optimal solutions within very small number of iteration. We
expect that our implementation will produce high quality
solutions for large size problems, too. All the tests were
performed on AMD Sempron (tm) Processor with 1.60 GHz
and 512 MB of RAM under Windows OS.

VI. CONCLUSION

The Bee Colony Optimization (BCO) has been
successfully applied to the problem of static scheduling of
independent tasks on homogeneous multiprocessor systems.
The preliminary results show that BCO was able to obtain
optimal solution for all tested randomly generated small to

medium size examples. We expect that our implementation
will produce high quality solutions for large size problems,
too. The proposed approach probably represents good
addition to the existing meta-heuristic approaches dealing
with the scheduling problem.

There are no theoretical results at the moment that could
support proposed approach. Usually, development of various
meta-heuristic was based on experimental work in initial
stage. Good experimental results than motivate researchers
to try to produce some theoretical background. The concept
proposed in this paper is not exception in this sense.

REFERENCES

 [1] G. Beni, “The concept of cellular robotic system,” in Proc. of the 1988
IEEE International Symposium on Intelligent Control, IEEE Computer
Society Press, Los Alamitos, CA , pp. 57–62.

 [2] G. Beni, and J. Wang, “Swarm intelligence,” in Proc. of the Seventh

Annual Meeting of the Robotics Society of Japan, RSJ Press, Tokyo,
1989, pp. 425–428.

[3] G. Beni, and S. Hackwood, “Stationary waves in cyclic swarms,” in:

Proc. of the 1992 International Symposium on Intelligent Control, IEEE
Computer Society Press, Los Alamitos, CA, pp. 234–242.

[4] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence. Oxford

University Press, Oxford, 1997.

[5] S. Camazine, and J. Sneyd, “A model of collective nectar source by

honey bees: self-organization through simple rules,” Journal of
Theoretical Biology, vol. 149, pp. 547- 571, 1991.

[6] E. G. Coffman Jr, M. R. Garey, and D.S. Jonson, “An application of

bin-packing to multiprocessor scheduling,” SIAM Journal on
Computing, vol. 7, pp. 1-17, 1978.

[7] T. Davidović, and T. G. Crainic, “Benchmark-problem instances for

static scheduling of task graphs with communication delays on
homogeneous multiprocessor systems,” Computers & Operations
Research, pp. 2155–2177, 2006.

[8] M. Dell'Amico, and S. Martello, “Optimal scheduling of tasks on
identical parallel processors”, ORSA Journal on Computing, vol. 7, pp.
191-200, 1995.

[9] M. R. Garey, and D. S. Johnson, Computers and intractability: a guide

to the theory of NP-completeness. W. H. Freeman and Company, 1979.

[10] R.L. Graham, “Bounds on multiprocessor timing anomalies,” SIAM

Journal on Applied Mathematics, vol. 17, pp. 416-429, 2006.

[11] M. Haouari, A. Gharbi, and M. Jemmali, “Tight bounds for the

identical parallel machine scheduling problem,” International
Transaction in Operational Research, vol. 13, pp. 529-548, 2006.

[12] P. Lučić, and D. Teodorović, “Bee system: modeling combinatorial

optimization transportation engineering problems by swarm
intelligence,” in Preprints of the TRISTAN IV Triennial Symposium on
Transportation Analysis. Sao Miguel, Azores Islands, 2001, pp. 441-
445.

[13] P. Lučić, and D. Teodorović, “Vehicle routing problem with uncertain

demand at nodes: the bee system and fuzzy logic approach”, in Fuzzy
Sets based Heuristics for Optimization, Verdegay JL, Eds. Physica
Verlag: Berlin Heidelberg, 2002, pp. 67-82.

[14] P. Lučić, and D. Teodorović, “Computing with bees: attacking

complex transportation engineering problems,” International Journal on
Artificial Intelligence Tools, vol. 12, pp. 375-394, 2003.

[15] E. Mokotoff, “An exact algorithm for the identical parallel machine

scheduling problem,” European Journal of Operational Research, vol.
152, pp.758-769, 2004.

[16] S. Shakeri, and R. Logendran, “A mathematical programming-based

scheduling framework for multitasking environments,” European
Journal of Operational Research, vol. 176, pp. 193-209, 2007.

[17] A. Thesen, “Design and evaluation of tabu search algorithm for

multiprocessor scheduling,” Journal of Heuristics, vol. 4, pp. 141-160,
1998.

