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Introduction

Urban road networks in many countries are severely congested,
resulting in increased travel times, increased number of stops,
unexpected delays, greater travel costs, inconvenience to drivers and
passengers, increased air pollution and noise levels, and increased
number of traffic accidents. Every day thousands of vehicles are
delayed. Why do we wait? The answer is simple: demand that during
certain time periods exceeds capacity is what results in queues. Service
demand is characterized by the car arrival rate. Arrival rates signifi-
cantly vary depending on the time of day, day in a week, or month in a
year. Service rate indicates the number of cars that could be served in a
given time unit. Obviously there are fluctuations in arrival rates and
service times in many queueing systems. These fluctuations create
queues and decrease the level of service offered to clients. The ‘Hours of
Delay per Traveler’ measure is used to represent the congestion level in
cities. It has been widely documented that traffic congestion has
increased in cities of all sizes over the past two decades.

In order to achieve low increases in traffic congestion in cities, the
rate of increasing supply should match the rate of increase in demand.
Expanding traffic network capacities by building more roads is very
costly as well as environmentally damaging. More efficient usage of the
existing supply is essential in order to maintain the rising travel
demand.

Researchers, planners, and transportation professionals have devel-
oped various Travel Demand Management (TDM) techniques (Vick-
rey, 1969; Yang & Huang, 1999; Phang & Toh, 2004; Sullivan &
Harake, 1998; Teodorovic & Edara, 2005), i.e. various strategies that
increase travel choices to travelers. TDM strategies include alternative
mode encouragement strategies such as ‘Park-and-Ride facilities’, ‘High
Occupancy Vehicle (HOV) facilities’, ‘Ride-sharing programs’, ‘Tele-
commuting’, ‘Alternative work hours’, ‘Congestion Pricing’, ‘Prefer-
ential parking to rideshare vehicles’, among others.

In ride-matching systems, commuters wishing to participate in ride
sharing are matched by where they live and work, and by their work
schedule. There is no standard method in the open literature to
determine the best ride-matching method. In this paper, an attempt
has been made to develop the methodology capable to solve the ride-
matching problem. The proposed methodology is based on the concepts
of collective intelligence.

The paper is organized as follows: the ride-sharing concept is
described in Section ‘Ride Sharing’, while Section ‘The Ride-Matching
Problem’ contains the statement of the ride-matching problem. The
proposed solution to the ride-matching problem is described in Section
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‘Proposed Solution to the Ride-Matching Problem’. The new computa-
tional paradigm — the Bee Colony Optimization (BCO) —is explained in
Section ‘The Bee Colony Optimization: The New Computational
Paradigm’. Solving the Ride-Matching Problem by the Fuzzy Bee
System (FBS) is described in Section ‘Solving the Ride-Matching
Problem by the Fuzzy Bee System’.

Ride Sharing

Ride sharing is one of the most widely used TDM techniques that
assumes the participation of two or more persons that together share a
vehicle when traveling from few origins to few destinations. The
benefits of ride sharing are obvious: ride sharing significantly reduces
the total number of trips. By sharing the ride with just one other
commuter, one can decrease commuting everyday expenditure by 50%.
At the same time, it is possible, while ride sharing, to use HOV lanes, to
develop social life, and even create new friendships. Participants in ride
sharing decide by themselves about various ride sharing operational
issues (vehicle schedule, pick-up and drop-off points, maximum waiting
time, music playing, smoking policy). Ride share programs use a wide
range of traveler databases to match commuters who live and/or work
in close proximity to each other for carpools and vanpools. Depending
on the number of commuters in the group the carpool or the vanpool
will be proposed and formed.

Carpooling is a widespread type of ride sharing. The participants in
carpooling are neighbors who work at different companies located only
a short distance away from each other, who also have similar work
hours. The participants are frequently also staff of a single company
who live next to each other. In some cases, the same traveler drives all
the time, while the other commuters participate in sharing the cost. In
some other cases, travelers alternate in driving.

Vanpooling is also a well-known type of ride sharing. A vanpool is
usually composed of 5-15 commuters. Vans are leased or purchased by
individuals that participate in vanpooling, by third party, or by
employer, or a group of employers. The vanpool participants define
the vanpool schedule and route. Most frequently, ride share programs
put a new commuter into one of the vacant vanpools. The fares are
based on the van type, and the mileage traveled.

The Ride-Matching Problem

There are various computerized ride-matching services that have been
developed. In these systems, commuters wishing to participate in ride
sharing are matched by where they live and work, and by their work
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schedule. Databases for ride matching are usually composed of
hundreds or even thousands of names of commuters who want to
share the ride. These bases contain information about names, tele-
phones, home addresses, work addresses, work schedules, weekly
frequencies of commuting (with specified commuting days), car
availability, smoking preference, willingness to drive, etc.

On the other hand, there is no standard method in the open literature
to determine the best ride matching. Obviously, there is a need to
develop a more concrete methodology. The ride-matching problem
considered in this paper could be defined in the following way: Make
routing and scheduling of the vebicles and passengers for the whole
week in the ‘best possible way’. All drivers that participate in ride
sharing offer to the operator the following information regarding trips
planned for the next week: (a) vehicle capacity (two, three, or four
persons); (b) days in the week when person is ready to participate in
ride sharing; (c) trip origin for every day in a week; (d) trip destination
for every day in a week; and (e) desired departure and/or arrival time
for every day in a week.

The following are potential objective functions: (a) minimize the
total distance traveled by all participants; (b) minimize the total delay;
and/or (c) make vehicle utilization relatively equal. We deal with the
deterministic combinatorial optimization problem in the case when the
desired departure and/or arrival times are fixed (for example, ‘I want to
be picked-up exactly at 8:00 a.m.’). On the other hand, in many real-
life situations the desired departure and/or arrival times are fuzzy (I
want to be picked-up about 8:00 a.m.). In this case, the ride-matching
problem should be treated as a combinatorial optimization problem
characterized by uncertainty.

Proposed Solution to the Ride-Matching Problem

The ride-matching problem could be treated as a deterministic
combinatorial optimization problem, or as a combinatorial optimiza-
tion problem characterized by uncertainty. In this paper, an attempt
has been made to develop the methodology capable to solve both
classes of the ride-matching problem. At the same time, the proposed
methodology based on the collective intelligence concepts is sufficiently
general and could be applied to various combinatorial optimization
problems.

A great number of traditional engineering models and algorithms
used to solve complex problems are based on control and centraliza-
tion. Various natural systems (such as social insect colonies) lecture us
that very simple individual organisms can create systems able to
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perform highly complex tasks by dynamically interacting with each
other.

Bee swarm behavior in nature is, first and foremost, characterized by
autonomy and distributed functioning and self-organizing. In the last
couple of years, the researchers started studying the behavior of social
insects in an attempt to use the Swarm Intelligence concept in order to
develop various Artificial Systems.

The BCO Metaheuristic that represents the new direction in the field
of Swarm Intelligence is introduced in this paper. One of the primary
goals of this paper is to explore the possible applications of collective
bee intelligence in solving combinatorial problems characterized by
uncertainty. The development of the new heuristic algorithm for the
ride-matching problem using the proposed approach shows the
characteristics of the proposed concepts.

The Bee Colony Optimization (BCO): The New Computational
Paradigm

Social insects (bees, wasps, ants, termites) have lived on Earth for
millions of years, building nests and more complex dwellings, organiz-
ing production and procuring food. The colonies of social insects are
very flexible and can adapt well to the changing environment. This
flexibility allows the colony of social insects to be robust and maintain
its life in spite of considerable disturbances.

The dynamics of the social insect population is a result of the
different actions and interactions of individual insects with each other,
as well as with their environment. The interactions are executed via a
multitude of various chemical and/or physical signals. The final product
of different actions and interactions represents social insect colony
behavior. Interaction between individual insects in the colony of social
insects has been well documented. The examples of such interactive
behavior are bee dancing during the food procurement, ants’ pher-
omone secretion, and performance of specific acts, which signal the
other insects to start performing the same actions. These communica-
tion systems between individual insects contribute to the formation of
the ‘collective intelligence’ of the social insect colonies. The term
‘Swarm Intelligence’ denoting this ‘collective intelligence’ has come into
established use (Beni, 1988; Beni & Wang, 1989; Beni & Hackwood,
1992; Bonabeau et al., 1999).

Bees in the Nature

Self-organization of bees is based on a few relatively simple rules of
individual insect’s behavior. In spite of the existence of a large
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number of different social insect species, and variation in their
behavioral patterns, it is possible to describe individual insects’ as
capable of performing a variety of complex tasks (Camazine & Sneyd,
1991; Collevatti et al., 1997; Dukas & Real, 1991; Dukas &
Visscher, 1994; Gould, 1987; Kadmoon & Shmida, 1992; Seeley,
1992; Seeley & Visscher, 1988; Waddington et al., 1998). The best
example is the collection and processing of nectar, the practice of
which is highly organized. Each bee decides to reach the nectar source
by following a nestmate who has already discovered a patch of
flowers. Each hive has a so-called dance floor area in which the bees
that have discovered nectar sources dance, in that way trying to
convince their nestmates to follow them. If a bee decides to leave the
hive to get nectar, she follows one of the bee dancers to one of the
nectar areas. Upon arrival, the foraging bee takes a load of nectar and
returns to the hive relinquishing the nectar to a food storer bee. After
she relinquishes the food, the bee can: (a) abandon the food source
and become again an uncommitted follower; (b) continue to forage at
the food source without recruiting the nestmates; or (¢) dance and
thus recruit the nestmates before the return to the food source. The
bee opts for one of the above alternatives with a certain probability.
Within the dance area, the bee dancers ‘advertise’ different food areas.
The mechanisms by which the bee decides to follow a specific dancer
are not well understood, but it is considered that ‘the recruitment
among bees is always a function of the quality of the food source’
(Camazine & Sneyd, 1991). It is also noted that not all bees start
foraging simultaneously. Experiments confirm that new bees begin
foraging at a rate proportional to the difference between the eventual
total and the number presently foraging.

Lucic and Teodorovic (2001, 2003) were the first to use basic
principles of collective bee intelligence in solving combinatorial
optimization problems. They introduced the Bee System (BS) and
tested it in the case of the Traveling Salesman Problem. The BCO
Metaheuristic that has been proposed in this paper represents further
improvement and generalization of the BS. The basic characteristics
of the BCO Metaheuristic are described. Our artificial bee colony
behaves partially alike, and partially differently from bee colonies in
nature. The FBS (that represents special case of the BCO) capable to
solve combinatorial optimization problems characterized by uncer-
tainty is also introduced in the paper. Within FBS, the agents use
approximate reasoning and rules of fuzzy logic (Zadeh, 1965, 1973;
Teodorovic & Vukadinovic, 1998) in their communication and
acting.
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The Bee Colony Optimization (BCO) Metaheuristic

Within the BCO Metaheuristic, agents that we call artificial bees
collaborate in order to solve difficult combinatorial optimization
problems. All artificial bees are located in the hive at the beginning
of the search process. During the search process, artificial bees
communicate directly. Each artificial bee makes a series of local moves,
and in this way incrementally constructs a solution to the problem. Bees
are adding solution components to the current partial solution until
they create one or more feasible solutions. The search process is
composed of iterations. The first iteration is finished when bees create
for the first time one or more feasible solutions. The best-discovered
solution during the first iteration is saved, and then the second iteration
begins. Within the second iteration, bees again incrementally construct
solutions to the problem, et seq. There are one or more partial solutions
at the end of each iteration. The analyst-decision maker prescribes the
total number of iterations.

When flying through space our artificial bees perform either a
forward pass or a backward pass. During a forward pass, bees create
various partial solutions. They do this via a combination of individual
exploration and collective experience from the past.

After that, they perform a backward pass, i.e. they return to the hive.
In the hive, all bees participate in a decision-making process. We
assume that every bee can obtain the information about solutions’
quality generated by all other bees. In this way, bees exchange
information about the quality of the partial solutions created. Bees
compare all generated partial solutions. Based on the quality of the
partial solutions generated, every bee decides whether to abandon the
created partial solution and become again an uncommitted follower,
continue to expand the same partial solution without recruiting
nestmates, or dance and thus recruit the nestmates before returning
to the created partial solution. Depending on the quality of the partial
solutions generated, every bee possesses a certain level of loyalty to the
path leading to the previously discovered partial solution. During the
second forward pass, bees expand previously created partial solutions,
and after that perform again the backward pass and return to the hive.
In the hive bees again participate in a decision-making process, perform
a third forward pass, etc. The iteration ends when one or more feasible
solutions are created.

Like Dynamic Programming, the BCO also solves combinatorial
optimization problems in stages. Each of the defined stages involves
one optimizing variable. Let us denote by ST ={st;, st,, ..., st,,,} a finite
set of pre-selected stages, where m is the number of stages. By B we
denote the number of bees to participate in the search process, and by
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I the total number of iterations. The set of partial solutions at stage st; is
denoted by S; (=1, 2,..., m).
The followmg is the pseudo code of the BCO:

Bee Colony Optimization

(1)  Initialization. Determine the number of bees B, and the number of
iterations I. Select the set of stages ST ={st, st,. . ., st,,}. Find
any feasible solution x to the problem. This solution is the
initial best solution.

(2) Seti: =1. Until i =1, repeat the following steps:
(3) Set j=1. Until j =m, repeat the following steps:

Forward pass: Allow bees to fly from the hive and to choose B partial
solutions from the set of partial solutions S, at stage st;.

Backward pass: Send all bees back to the hive. Allow bees to exchange
information about quality of the partial solutions created and
to decide whether to abandon the created partial solution and
become again uncommitted followers, continue to expand the
same partial solution without recruiting nestmates, or dance
and thus recruit nestmates before returning to the created
partial solution. Set, j: =j+1.

(4) If the best solution x; obtained during the ith iteration is better
than the best-known solution, update the best-known solution
(x: =x;).

(5) Set,i: =it1.

Alternatively, forward and backward passes could be performed
until some other stopping condition is satisfied. The possible stopping
conditions could be, for example, the maximum total number of
forward/backward passes, or the maximum total number of forward/
backward passes between two objective function value improvements.

Within the proposed BCO Metaheuristic, various sub-models
describing bees’ behavior and/or ‘reasoning’ could be developed and
tested. In other words, various BCO algorithms could be developed.
These models should describe the ways in which bees decide to
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abandon the created partial solution, to continue to expand the same
partial solution without recruiting nestmates, or to dance and thus
recruit nestmates before returning to the created partial solution.

In addition to proposing the BCO as a new metaheuristic, we also
propose in this paper the BCO algorithm that we call the FBS. In the
case of FBS, the agents (artificial bees) use approximate reasoning and
rules of fuzzy logic in their communication and acting. In this way, the
FBS is able to solve deterministic combinatorial problems, as well as
combinatorial problems characterized by uncertainty.

The Fuzzy Bee System

Bees face many decision-making problems while searching for the best
solution. The following are bees’ choice dilemmas: (a) What is the next
solution component to be added to the partial solution? (b) Should the
partial solution be abandoned or not? (c¢) Should the same partial
solution be expanded without recruiting nestmates?

The majority of the choice models are based on random utility
modeling concepts. These approaches are highly rational. They are
based on assumptions that decision makers possess perfect information
processing capabilities and always behave in a rational way (trying to
maximize utility). In order to offer an alternative modeling approach,
researchers started to use less normative theories. The basic concepts of
Fuzzy Set Theory, linguistic variables, approximate reasoning, and
computing with words introduced by Zadeh (Beni & Hackwood, 1992;
Bonabeau et al., 1999) have more understanding for uncertainty,
imprecision, and linguistically expressed observations. Following these
ideas, we start in our choice model from the assumption that the
quantities perceived by bees are ‘fuzzy’. Artificial bees use approximate
reasoning and rules of fuzzy logic (Zadeh, 1965, 1973; Teodorovi¢ &
Vukadinovi¢, 1998) in their communication and acting. During the jth
stage bees fly from the hive and choose B partial solutions from the set
of partial solutions S, at stage st; (forward pass). When adding the
solution component to the current partial solution during the forward
pass, a specific bee perceives a specific solution component as ‘less
attractive’, ‘attractive’, or ‘very attractive’. We also assume that an
artificial bee can perceive a specific attribute as ‘short’, ‘medium’ or
‘long’ (Figure 1), ‘cheap’, ‘mediun?’, or ‘expensive’, etc.

Calculating the solution component attractiveness and choice of the next
solution component to be added to the partial solution. The approximate
reasoning algorithm for calculating the solution component attractive-
ness consists of the rules of the following type:
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Figure 1. Fuzzy sets describing distance

If the attributes of the solution component are VERY GOOD
Then the considered solution component is VERY ATTRACTIVE

The main advantage of using the approximate reasoning algorithm
for calculating the solution component attractiveness is that it is
possible to calculate solution component attractiveness even if some of
the input data were only approximately known. Let us denote by f; the
attractiveness value of solution component i. The probability p; for
solution component i to be added to the partial solution is equal to the
ratio of f; to the sum of all considered solution component attractive-
ness values:

pi= /e (1)
¥
In order to choose the next solution component to be added to the
partial solution, artificial bees use a proportional selection known as
‘roulette wheel selection.” (The sections of roulette are in proportion to
probabilities p;). In addition to the ‘roulette wheel selection,” several
other ways of selection could be used.

Bee’s partial solutions comparison mechanism. In order to describe bee’s
partial solutions comparison mechanism, we introduce the concept of
partial solution badness. We define partial solution badness in the
following way:

L — min (2)
where

L, badness of the partial solution discovered by the kth bee
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L™ the objective function values of the partial solution discovered
by the kth bee

Lyin the objective function value of the best-discovered partial
solution from the beginning of the search process

Lmax the objective function value of the worst discovered partial
solution from the beginning of the search process

The approximate reasoning algorithm to determine the partial
solution badness consists of the rules of the following type:

If the discovered partial solution is BAD
Then loyalty is LOW

Bees use approximate reasoning, and compare their discovered
partial solutions with the best, and the worst discovered partial
solution from the beginning of the search process. In this way,
‘historical facts’ discovered by the all members of the bee colony
have significant influence on the future search directions.

Bee’s decision about recruiting nestmates. Since bees are, above all, social
insects, it is assumed in this paper that the probability p* of an event
that a bee will continue to fly along the same path without recruiting
nestmates is very low (p* «1). The bee flies to the dance floor, and
starts dancing with the probability equal to (1-p*). This kind of
communication between individual bees contributes to the formation of
the ‘collective intelligence’ of the bee colony. In the case when a bee
decides not to fly along the same path, the bee will go to the dancing
area and will follow another bee(s).

Calculating the number of bees changing the path. Every partial solution
(partial path) that is being advertised in the dance area has two main
attributes: (a) the objective function value; and (b) the number of bees
that are advertising the partial solution (partial path). The number of
bees that are advertising the partial solution is a good indicator of a
bees’ collective knowledge. It shows how a bee colony perceives specific
partial solutions.

The approximate reasoning algorithm to determine the advertised
partial solution attractiveness consists of the rules of the following type:

If the length of the advertised path is SHORT and the number of
bees advertising the path is SMALL
Then the advertised partial solution attractiveness is MEDIUM
Path attractiveness calculated in this way can take values from the
interval [0,1]. The higher the calculated value, the more attractive is the
advertised path. Bees are less or more loyal to ‘old’ paths. At the same
time, advertised paths are less, or more, attractive to bees. Let us note
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paths p; and pj- We denote by 7,; the number of bees that will abandon
path p;, and join nestmates who will fly along path p;.

The approximate reasoning algorithm to calculate the number of
shifting bees consists of rules of the following type:

If bees’ loyalty to path p;, is LOW and path p; ‘s attractiveness is
HIGH
Then the number of shifting bees from path p; to path p; is HIGH

In this way, the number of bees flying along a specific path is changed
before beginning of the new forward pass. Using collective knowledge
and sharing information among themselves, bees concentrate on more
promising search paths, and slowly abandon less promising paths.

Solving the Ride-Matching Problem by the Fuzzy Bee System

Let us represent every passenger that participates in ride sharing by a
node (Figure 2). We decompose our problem in stages. The first
passenger in the car (driver) represents the first stage, the second
passenger to join the ride sharing represents the second stage, the
third passenger represents the third stage, et seq.

During a forward pass the bee will visit certain number of nodes,
create a partial solution, and after that return to the hive (node O). In
the hive the bee will participate in a decision-making process. Bees
compare all generated partial solutions. Based on the quality of the
partial solutions generated, every bee will decide whether to abandon
the generated path and become again an uncommitted follower,
continue to fly along a discovered path without recruiting nestmates,
or dance and thus recruit nestmates before returning to the discovered
path. Depending on the quality of the partial solutions generated, every
bee possesses a certain level of loyalty to the path previously

rtr 1 rtr o

First Second Third First Second Third
passenger  passenger passenger passenger  passenger  passenger

Figure 2. (a) First forward pass and (b) first backward pass
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discovered. For example, bees By, B,, and Bj participated in the
decision-making process. After comparing all generated partial solu-
tions, bee B; decided to abandon an already generated path and join
bee B>.

The bees B; and B, fly together along the path generated by the
bee B,. When they reach the end of the path, they are free to make
individual decisions about the next node to be visited. The bee Bj
will continue to fly along the discovered path without recruiting
nestmates (Figure 3). In this way, bees are again performing a
forward pass.

During the second forward pass, bees will visit a few more nodes,
expand previously created partial solutions, and after that perform
again the backward pass and return to the hive (node O). In the hive,
bees will again participate in a decision-making process, make a
decision, perform third forward pass, etc. The iteration ends when the
bees have visited all nodes. When choosing the next node to be visited
during the forward pass, the bee perceives a specific node as ‘less
attractive’, ‘attractive’, or ‘very attractive’, depending on the proximity
in space and proximity in time between two passenger requests. We call
these proximities ‘distance in space at origin’, ‘distance in space at
destination’, and ‘distance of arrival times’.

We assume that an artificial bee can perceive a particular distance
between nodes as ‘short’, ‘medium’ or ‘long’.

The approximate reasoning algorithm to determine the node attrac-
tiveness consists of the rules of the following type:

If the distance in space at origin is SHORT, and the distance in
space at destination is SHORT, and the distance of arrival
times is SHORT

Then the node attractiveness is HIGH

he!

O O

O O

O O

[ A A B |

Figure 3. Second forward pass
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The path badness (defined by eq. (2)) is used in the corresponding
approximate reasoning algorithm to determine a bee’s loyalty to the
discovered path. The approximate reasoning algorithm to determine
the advertised path attractiveness consists of rules of the following type:

If the length of the advertised path is SHORT, and the number of
bees advertising the path is SMALL
Then the advertised path attractiveness is MEDIUM

Numerical Experiment

We tested the proposed model in the case of ride-sharing demand from
Trani, a small attractive city in the south-east of Italy, to Bari, the
reglonal capital of Puglia. We collected data regarding 97 travelers
demanding ride sharing, and assumed, for sake of simplicity, that
capacity is four passengers for all their cars. In our case, the algorithm
chooses 24-4 =96 out of 97 travelers to build up the “best’ path. In
Figures 4 and 5 the travelers’ origins and destinations are represented
by diamonds. We used a hive of 15 bees, leaving at once. Only six
‘foraging paths’ have been completed by the bees; the other paths have
been sooner or later abandoned.

The following are the best-discovered paths, and the corresponding
clusters:

Optimal path ={21,63,17,66, 74,69,88,52, 36,77,92,61,
96,70,87,20, 53,34,93,29, 16,33,45,97, 27,76,2,11, 30,43,58,65,
19,26,39,60, 75,72,15,5, 86,81,13,6, 8,42,46,40, 56,32,24,83,
10,3,47,94, 25,89,91,49, 9,48,95,54, 68,31,71,50, 80,51,28,82,
44,64,57,59, 14,23,1,78, 22,67,79,18, 37,7,55,62, 90,84,41,85,
12,73,4,38)

Cluster #1={21,63,17,66}, Cluster #2 ={74,69,88,52}, Cluster
#3 ={36,77,92,61}, Cluster #4={96,70,87,20}, Cluster #5=
(53,34,93,29), Cluster #6 —{16,33,45,97), Cluster #7 ={27,76,2,11),
Cluster #8 ={30,43,58,65}, Cluster #9 ={19,26,39,60}, Cluster #10 =
{75,72,15,5}, Cluster #11 ={86,81,13,6}, Cluster #12 ={8,42,46,40},
Cluster #13 ={56,32,24,83}, Cluster #14={10,3,47,94}, Cluster
#15=(25,89,91,49], Cluster #16={9,48,95.54), Cluster #17 =
{68,31,71,50}, Cluster #18 ={80,51,28, 82} Cluster #19 ={44,64,
57,59}, Cluster #20 ={14,23,1,78}, Cluster #21 ={22,67,79,18} Clus-
ter #22 ={37,7,55,62}, Cluster #23 ={90,84,41,85}, Cluster #24 =
{12,73,4,38)

Changes in the best-discovered objective function values are shown
in Figure 6.
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Figure 5. Location of destinations
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Figure 6. Changes in the best-discovered objective function values

Conclusions

Carpooling and vanpooling are widely used TDM strategies. They can
significantly reduce the total number of trips in a network. Participants
in ride sharing also save money, reduce stress, and reduce travel time
since they can use HOV lanes. In ride-matching systems, commuters
wishing to participate in ride sharing are matched by where they live
and work, and by their work schedule. There is no standard method in
the open literature to determine the best ride-matching method.

In this paper, an attempt has been made to develop the methodol-
ogy to be able to solve the ride-matching problem. The proposed
methodology was based on the concepts of collective intelligence. The
proposed BCO Metaheuristic was sufficiently general and could be
applied to various combinatorial optimization problems. There are,
however, no theoretical results at this time that could support such a
proposed approach. The development of the fuzzy rule basis and the
choice of membership functions assume a trial-and-error procedure.
Usually, the development of various metaheuristics was based on
experimental work in the initial stages. Good experimental results
usually motivate researchers to try to produce some theoretical
results. The concepts proposed in this paper are not an exception in
this sense.

Preliminary results of the BCO appear very promising. These results
indicate that the development of new models based on swarm
intelligence principles could significantly contribute to the solution of
a wide range of complex engineering and management problems.
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