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Routing and wavelength assignment in
all-optical networks based on the bee
colony optimization

Goran Z. Marković, Dušan B. Teodorović ∗ and Vladanka S. Aćimović-Raspopović
University of Belgrade, Faculty of Transport and Traffic Engineering, Serbia

Abstract. Routing and Wavelength Assignment (RWA) problem in all-optical networks assumes determining the routes and
wavelengths to be used to create the lightpaths for connection requests. The RWA problem belongs to a class of difficult com-
binatorial optimization problems. We propose the Bee Colony Optimization (BCO) heuristic algorithm tailored for the RWA
problem (BCO–RWA) in all-optical networks without wavelength conversion in intermediate nodes. The BCO represents a new
metaheuristic capable to solve difficult combinatorial optimization problems. The artificial bee colony behaves partially alike,
and partially differently from bee colonies in nature. The proposed BCO–RWA algorithm has been performed for static case in
which ligthpath requests are known in advance. We proved that BCO–RWA is able to produce optimal or near-optimal solutions
in a reasonable amount of computer time.
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1. Introduction

Optical networks employing Wavelength Division
Multiplexing (WDM) technique are believed to be the
next generation networks that can meet ever increas-
ing capacity requirements for advanced services. Re-
cent developments in WDM technology have led to
a tremendous research interest in WDM-based optical
network design [3,21,31,38,39,45,49].

WDM technique brings out new problems in coor-
dination of wavelengths usage in network. Each wave-
length is a separate, circuit-switched communication
channel, called a lightpath, carrying data up to several
Gb/s. When it is needed to establish a lightpath be-
tween a node pair, a route must be found and a wave-
length has to be assigned to carry the information.
The problem is known as routing and wavelength as-
signment (RWA) [1,2,17,35–37,45,47,56]. In the case
when the wavelength conversion at intermediate rout-
ing nodes is not possible, a lightpath has to be set up by
assigning a dedicated wavelength to it on each physical
link along its path between the end nodes in a network.

*Corresponding author: Dušan B. Teodorović, University of Bel-
grade, Faculty of Transport and Traffic Engineering, 11000 Bel-
grade, Vojvode Stepe 305, Serbia. E-mail: duteodor@vt.edu

Routing and wavelength assignment problem is a
significant research topic. A number of papers devoted
to the RWA problem proposed various both exact and
heuristic approaches. A detailed survey of these meth-
ods can be found in [21] or in [56]. The RWA problem
is combinatorial by its nature and belongs to a class
of difficult combinatorial optimization problems [2,44,
47]. The optimal solution is difficult to reach, espe-
cially in the cases of large networks. The RWA prob-
lem is found to be an NP-complete problem that cannot
be solved exactly in polynomial time.

We concentrate here on the static version of the
routing and wavelength assignment problem in which
the connection requests are known in advance. Our
objective is to maximize the number of established
lightpaths, known as the Max-RWA problem. The
Max-RWA problem could be formulated as an integer
linear program (ILP). The reviews of various ILP for-
mulations that have been proposed can be found in [25,
26]. Two different 0-1 linear programming formula-
tions of the Max-RWA problem are proposed in [32].
The solution approach in [32] is based on linear relax-
ations. Also, a new integer linear programming formu-
lation is proposed in [42].

A range of heuristic and metaheuristic algorithms
(Simulated Annealing, Tabu Search, Genetic Algo-

0921-7126/07/$17.00 © 2007 – IOS Press and the authors. All rights reserved
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rithms, Ant Colony Optimization) have been proposed
for the RWA problem in [3–5,12,22,27,30,31,38,42,
44,48,54].

In this paper, we propose a new metaheuristic algo-
rithm for the RWA problem. Our approach is based on
the bee colony optimization (BCO). The BCO heuristic
algorithm is tailored for the Max-RWA problem in all-
optical networks. The artificial bee colony behaves par-
tially alike, and partially differently from bee colonies
in nature and represents the new metaheuristic capable
to solve difficult combinatorial optimization problems.
The proposed BCO–RWA algorithm has been able to
produce high quality solutions in a reasonable compu-
tation time. We compare the results of our algorithm
with the results obtained by two different approaches
applied to solve the same problem. The first one is the
LP relaxation approach proposed in [32]. The second
one is the Tabu metaheuristic algorithm recently pro-
posed in [22]. The comparison shows that our algo-
rithm gives better performances in terms of the number
of established lightpaths.

The paper is organized in the following way. Prob-
lem statement is given in Section 2. Bee colony
behavior in the nature is given in Section 3. Section 4
contains detailed description of the proposed BCO–
RWA algorithm. Section 5 is devoted to the descrip-
tion of numerical experiments and obtained simula-
tion results. Finally, the conclusion is given in the Sec-
tion 6.

2. Statement of the problem

The Max-RWA problem that we consider in this pa-
per is defined in the following way: For a given traffic
demand matrix and the given number of wavelengths,
maximize the number of established lightpaths in a
given optical network. We assume a network in which
wavelength conversion is not available. This means
that a lightpath operates on the same wavelength across
all fiber links that it traverses (a lightpath satisfies the
wavelength-continuity constraint). We assume that a
given optical network is single fiber which means that
each physical link has one separate fiber for each di-
rection. Each fiber supports the same number of wave-
lengths W .

An optical network composed of N nodes and L
physical links can be represented by a corresponding
graph with N nodes and L undirected edges. We use
the mathematical formulation of the Max-RWA prob-
lem proposed by Krishnaswamy and Sivarajan in [32].
Let us introduce the following notation:

N – The set of nodes in given network,
|N | – The total number of nodes,

L – The set of links in given network,
|L| – The total number of links,
i, j – End points of a physical link, i, j ∈ N ,

(s, d) – Source-destination node pair for a requested
lightpath, s, d ∈ N , s �= d,

SD – Set of node pairs (s, d),
|SD| – The total number of (s, d) pairs,

Λ – The set of available wavelengths λ, where
λ ∈ Λ,

W – The total number of available wavelengths
W = |Λ|,

ρ(s,d) – The number of requested lightpaths for a
node pair (s, d),

P – The ordinar number of a requested lightpath
for given (s, d) pair, P = [1, 2, . . . , ρ(s,d)],

Ci,j =

{ 1, if between two nodes i and j
exists a physical link, ∀i, j ∈ N ,

0, otherwise,

x
p
(s,d) =

{ 1, if a lightpath p for a node pair
(s, d) is established,

0, otherwise,

x
p,λ
(s,d) =

{ 1, if a lightpath p for a node pair
(s, d) is established using λ,

0, otherwise,

xp,λ
(s,d),(i,j) =

⎧⎪⎨
⎪⎩

1, if a lightpath p for a node pair
(s, d) is established using
λ over a link (i, j),

0, otherwise.

The following is the mathematical formulation of
the Max-RWA problem:

max F =
|SD|∑

(s,d)=1

ρ(s,d)∑
p=1

xp
(s,d), (1)

ρ(s,d)∑
p=1

x
p
(s,d) � ρ(s,d) ∀(s, d), (2)

W∑
λ=1

x
p,λ
(s,d) = x

p
(s,d) ∀p, (s, d), (3)

x
p,λ
(s,d),(i,j) � x

p
(s,d) ∀p, (s, d), λ, (i, j), (4)

|SD|∑
(s,d)=1

ρ(s,d)∑
p=1

x
p,λ
(s,d),(i,j) � 1 ∀λ, (i, j), (5)
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|N |∑
i=1

C(i,j) × x
p,λ
(s,d),(i,j) −

|N |∑
i=1

C(j,i) × x
p,λ
(s,d),(j,i)

=

⎧⎪⎨
⎪⎩

xp,λ
(s,d), if j = s, ∀(s, d), p, λ, j,

−xp,λ
(s,d), if j = d,

0, if j �= s ∧ j �= d,

(6)

xp
(s,d), x

p,λ
(s,d), x

p,λ
(s,d),(i,j) ∈ {0, 1}. (7)

We try to maximize the total number of established
lightpaths (relation (1)). The constraint (2) ensures that
the total number of established lightpaths for a node
pair (s, d) is at most ρ(s,d). The relations (3)–(6) en-
sure the wavelength continuity constraints. The con-
straint (3) ensures that if a lightpath p exists between
node pair (s, d) then only one wavelength is assigned
to it, between the W possible alternatives. Only those
xp,λ

(s,d),(i,j) could be nonzero for which the x
p,λ
(s,d) vari-

ables are nonzero (the constraint (4)). No two light-
paths traversing through the same link (i, j) will have
the identical wavelength assigned to them (constraint
(5)). The identical wavelength is kept at every node for
a lightpath xp

(s,d) (constraint 6)). The constraint (7) en-
sures that all the variables are binary.

We solve the defined problem by the new meta-
heuristic algorithm based on the bee colony optimiza-
tion (BCO).

3. Bees in the nature

A great number of traditional models and algorithms
used to solve complex problems are based on control
and centralization. Various natural systems (social in-
sect colonies) lecture us that very simple individual
organisms can create systems able to perform highly
complex tasks by dynamically interacting with each
other [7–10].

Bee swarm behavior in nature is, first and foremost,
characterized by autonomy and distributed functioning
and self-organizing. In the last couple of years, the re-
searchers have started studying the behavior of social
insects in an attempt to use the swarm intelligence con-
cept in order to develop various artificial systems.

Self-organization of bees is based on a few relatively
simple rules of individual insect’s behavior [6,11,13,
15,16,18–20,23,24,28,29,43,49–53,55]. In spite of the
existence of a large number of different social insect
species, and variation in their behavioral patterns, it
is possible to describe individual insects as capable of

performing a variety of complex tasks [14]. The best
example is the collection and processing of nectar, the
practice of which is highly organized. Each bee decides
to reach the nectar source by following a nestmate who
has already discovered a patch of flowers. Each hive
has a so-called dance floor area in which the bees that
have discovered nectar sources dance. In that way, they
try to convince their nestmates to follow them. If a bee
decides to leave the hive to get nectar, she follows one
of the bee dancers to one of the nectar areas. Upon ar-
rival, the foraging bee takes a load of nectar and returns
to the hive relinquishing the nectar to a food store bee.
After she relinquishes the food, the bee can (a) aban-
don the food source and become again uncommitted
follower, (b) continue to forage at the food source with-
out recruiting the nestmates, or (c) dance and thus re-
cruit the nestmates before the return to the food source.
The bee opts for one of the above alternatives with
a certain probability. Within the dance area, the bee
dancers “advertise” different food areas. The mecha-
nisms by which the bee decides to follow a specific
dancer are not well understood, but it is considered that
“he recruitment among bees is always a function of the
quality of the food source” [14]. It is also noted that not
all bees start foraging simultaneously. The experiments
confirmed, “new bees begin foraging at a rate propor-
tional to the difference between the eventual total and
the number presently foraging”.

Lučić and Teodorović [33,34] introduced the bee
colony optimization (BCO) metaheuristic and tested it
in the case of Traveling Salesman Problem. Teodor-
ović and Dell’Orco [51] applied the BCO when trying
to solve the Ride-Matching Problem. In this paper, we
propose the BCO heuristic algorithm tailored for the
Max-RWA problem.

4. The BCO–RWA algorithm

The agents that we call artificial bees collaborate in
order to solve the Max-RWA problem. We create the
artificial network shown in Fig. 1. The node depicted
by the square in Fig. 1 represents hive. At the begin-
ning of the search process all artificial agents are lo-
cated in the hive. Bees depart from the hive and fly
through the artificial network from the left to the right.
Bee’s trip is divided into stages. Bee chooses to visit
one artificial node at every stage. Each stage repre-
sents the collection of all considered origin-destination
pairs. Each artificial node is comprised of an origin
and destination linked by a number of routes. Light-
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4 G.Z. Marković et al. / Routing and wavelength assignment in all-optical networks

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Fig. 1. The artificial network.

path is a route with assigned wavelength chosen by bee
agent. Bee agent’s entire flight is collection of estab-
lished lightpaths. We have determined in advance the
number of bees B and the number of iterations I (the
concept of iteration will be explained later).

During the search process, artificial bees commu-
nicate directly. When flying through the space our
bees perform forward pass or backward pass (Fig. 2).
During forward pass every bee visits n stages (bee
tries to establish n new lightpaths). In every stage a
bee chooses one of the previously not visited artifi-
cial nodes. Sequence of the n visited artificial nodes
generated by the bee represents one partial solution of
the problem considered. Bee is not always successful
in establishing lightpath when visiting artificial node.
Bee’s success depends on the wavelengths’ availability
on the specific links. In this way, generated partial so-
lutions differ among themselves according to the total
number of established lightpaths.

After forward pass, bees perform backward pass, i.e.
they return to the hive. The number of nodes n to be
visited during one forward pass is prescribed by the an-
alyst at the beginning of the search process, such that
n � m, where m is the total number of requested
lightpaths.

In the hive, all bees participate in a decision-making
process. We assume that every bee can obtain the in-
formation about solutions’ quality generated by all
other bees. In this way, bees exchange information
about the quality of the partial solutions created (the
number of established lightpaths). Bees compare all
generated partial solutions. Based on the quality of the
partial solutions generated, every bee decides whether
to abandon the created partial solution and become

Fig. 2. The first forward and backward pass through the artificial
network.

again uncommitted follower, continue to expand the
same partial solution without recruiting the nestmates,
or dance and thus recruit the nestmates before return-
ing to the created partial solution. Depending on the
quality of the partial solutions generated, every bee
possesses certain level of loyalty to the path leading to
the previously discovered partial solution.

During the second forward pass (Fig. 3), bees ex-
pand previously created partial solutions (try to es-
tablish additional n lightpaths), and after that perform
again the backward pass and return to the hive. In
the hive bees again participate in a decision-making
process, perform third forward pass, etc. The iteration
ends when one or more feasible solutions of the RWA
problem are created. The best discovered solution dur-
ing the first iteration is saved, and then the second it-
eration begins. Within the second iteration, bees again
incrementally construct solutions of the problem, etc.
There is one or more created partial solutions at the end
of each iteration. The parameter n reflects the granular-
ity of the search process. The total number of forward
passes U in a search process depends on the total num-
ber of requested lightpaths m, as well as on the value
of the prescribed parameter n, where U = �m/n�.

For example, shown in Fig. 3, bees B2, B3 and B4
participated in the decision-making process. By com-
paring the qualities of all generated partial solutions
after the first backward pass, these bees decided to
abandon its already generated paths (visited artificial
nodes) and to join bees B1 and B5. Figure 3 illustrates
the situation in which bee B3 joined bee B1, and bees
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Fig. 3. Illustration of the bee’s flight throughout the artificial network during the first and second n stages.

B2 and B4 joined bee B5. During the second forward
pass bees B3 and B1 fly together along the path gener-
ated by the bee B1, while bees B2 and B4 fly together
along the path generated by the bee B5. When they
reach the end of the path, they are free to make individ-
ual decision about next node to be visited. During the
second forward pass, bees will visit n more unvisited
nodes, expand previously created partial solutions, and
after that perform again the backward pass and return
to the hive. In the hive, bees will again participate in
a decision making process, make a decision, perform
third forward pass, etc.

4.1. Bee’s node and route choice mechanisms

Bees choose some of the artificial nodes (not previ-
ously visited) in a random manner. Probability p that
a specific unvisited artificial node will be chosen by
the bee equals 1/ntot, where ntot is the total number
of unvisited artificial nodes. By visiting specific artifi-
cial node in the network shown in Fig. 3 bees attempt
to establish the requested lightpath between one real
source-destination node pair in optical network. Let us
assume that the specific bee decided to consider the
lightpath request between the source node s and the
destination node d. In the next step, it is necessary to
choose the route and to assign an available wavelength
along the route between these two real nodes. In this
paper, we defined for every node pair (s, d), the subset
Rsd of allowed routes that could be used when estab-
lishing the lightpath. We defined these subsets by using
the k shortest path algorithm. We calculated for every

of the k alternative routes the bee’s utility when choos-
ing the considered route. The shorter the chosen route
and the higher the number of available wavelengths
along the route, the higher the bee’s utilities are. We
define the bee’s utilities V sd

r when choosing the route r
between the node pair (s, d) in the following way:

V (s,d)
r = a

1
hr − hrmin + 1

+ (1 − a)
Wr

Wmax
, (8)

where:

r – The route ordinary number for a node pair,
r = 1, 2, . . . , k, r ∈ Rsd,

hr – The route length expressed in the number
of physical hops,

hrmin – The length of the shortest route r,
Wr – The number of available wavelengths

along the route r,
Wmax – The maximum number of available wave-

lengths among all the routes,
a – Weight (importance of the criteria), 0 �

a � 1.

Bees decide to choose a physical route in optical net-
work in a random manner. Inspired by the well-known
Logit model (one of the most successful and widely
accepted discrete choice model), we have assumed that
the probability psd

r of choosing route r in the case of
origin-destination pair (s, d) equals:

p(s,d)
r =

eV sd
r∑|Rsd|

i=1 eV sd
i

, ∀r ∈ Rsd, (9)
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where |Rsd| is the total number of available routes be-
tween pair of nodes (s, d). The higher the bee’s utili-
ties V sd

r along route r, the higher the probability psd
r of

choosing route r. The route r is available if there is at
least one free wavelength common along all the links
that belong to the route r.

In order to assign bee to one of the considered routes
we use roulette wheel. We divide the wheel into the
segments. Every segment corresponds to one consid-
ered route. The size of each segment equals to the prob-
ability of choosing specific route. A segment is ran-
domly selected by spinning the roulette wheel. In this
way, we assign bee to a specific route connecting spe-
cific origin-destination pair. In the next step, using the
random strategy, one of the available wavelengths is
assigned to the route chosen by the bee.

4.2. Bee’s partial solutions comparison mechanism

For every bee we now know the quality of the cre-
ated partial solution. In the hive every bee makes the
decision about abandoning the created partial solution
or expanding it in the next forward pass. It is assumed
in this paper that every bee can obtain the information
about partial solution quality created by every other
bee. The probability pu+1

b that the bee b will at begin-
ning of the u+1 forward pass use the same partial tour
that is defined in forward pass u equals:

pu+1
b = e−

Cmax−Cb
u , (10)

where:

Cb – The total number of established lightpaths
from the beginning of the search process
by the bth bee,

Cmax – The maximal number of established light-
paths from the beginning of the search
process by any bee,

u – Ordinary number of forward pass, u =
1, 2, . . . , U , where U = �m/n�.

We can see from the relation (10) that if a bee has
discovered the best partial solution in forward pass u
(Cb = Cmax), the bee b will continue to fly along the
same partial tour in the u + 1 forward pass with the
probability equal to one (pu+1

b = 1). The smaller
the number of the established lightpaths by the bee,
the smaller is the probability that the bee will fly again
along the same path. The smaller the ordinary number

of the forward pass u (beginning of the search process)
the higher the bees’ “freedom of flight”. The more for-
ward passes we make, the bees have less freedom to
explore the solution space.

The random number z is generated from the interval
[0, 1]. When z � pu+1

b , a bee will fly along the same

partial tour. In the opposite case when z > pu+1
b , bee

will abandon the created partial solution and become
the uncommitted follower.

4.3. Recruiting process

After making the decision to continue flight along
the previously generated path, the bee flies to the dance
floor area in the hive and starts dancing. Bee dancing
represents the interaction between individual bees in
the colony. This kind of communication between indi-
vidual bees contributes to the formation of the “collec-
tive intelligence” of the bee colony. In the case when
at the beginning of stage u + 1 bee does not want to
fly along the same path, it will go to the dancing area
and will follow another dancing bee. In this way, two
groups of bees are formed in the dancing area – un-
committed followers ready to join some of the dancing
bees, and dancing bees ready to recruit uncommitted
followers. The probability pP that the P th advertised
partial solution will be chosen by any of the uncom-
mitted follower equals:

pP =
eCP∑Q
i=1 eCi

, (11)

where:

CP – The total number of the established lightpaths
in the case of the P th advertised partial solu-
tion,

Q – The total number of advertised partial solu-
tions.

The random number is generated from the interval
[0, 1] for every uncommitted follower. Using these ran-
dom numbers and the relation (11) every uncommitted
follower is “assigned” to one of the dancing bees. In
this way, the number of bees flying along specific path
is changed before beginning of the new forward pass.
Using collective knowledge and sharing information
among themselves, bees concentrate on more promis-
ing search paths, and slowly abandon less promising
paths.



U
N

C
O

R
R

EC
TE

D
  P

R
O

O
F

AIC ios2a v.2007/04/04 Prn:24/09/2007; 14:10 F:aic413.tex; VTEX/Aust p. 7
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4.4. The pseudo-code of the bee colony optimization

The following is the pseudo-code of the bee colony
optimization metaheuristic in the case when n = 1.

(1) Initialization. Determine the number of

bees B, the number of iterations I and

the number of artificial nodes n to be

visited during each forward pass. Select

the set of stages ST = {st1, st2, . . . , stm}.

Find any feasible solution x of the

problem. This solution is the initial

best solution.

(2) Set i := 1. Until i = I, repeat the follow-

ing steps;

(3) Set j := 1. Until j = m, repeat the fol-

lowing steps;

Forward pass: Allow bees to fly from the

hive and to choose B partial solutions

from the set of partial solutions Sj at

stage stj.

Backward pass: Send all bees back to the

hive. Allow bees to exchange information

about quality of the partial solutions

created and to decide whether to abandon

the created partial solution and become

again uncommitted followers, continue to

expand the same partial solution without

recruiting the nestmates, or dance and

thus recruit the nestmates before re-

turning to the created partial solution.

Set j := j + 1.

(4) If the best solution xi obtained during

the ith iteration is better than the

best-known solution, update the best-

known solution (x := xi).

(5) Set i := i + 1.

Alternatively, forward and backward passes could
be performed until some other stopping condition
is satisfied. The possible stopping conditions could
be, for example, the maximum total number of for-
ward/backward passes, or the maximum total num-
ber of forward/backward passes between two objective
function value improvements.

5. Numerical experiments

The proposed BCO–RWA algorithm was tested on a
few numerical examples. We present here some com-
putational and comparative results for the BCO–RWA

Fig. 4. The optical network with 8 routing nodes.

algorithm. The first example is related to the optical
network shown in Fig. 4. Each edge (link) represents
a pair of directed fibers, one for each direction. We as-
sumed that the total number of available wavelengths
W is same for each fiber link.

The traffic demands (requested lightpaths) used in
this numerical experiment are presented by matrices
Di (i = 1, . . . , 6) given below for D1tot = 28,
D2tot = 31, D3tot = 34, D4tot = 36, D5tot = 38
and D6tot = 40. Ditot is the total number of requested
lightpaths.

D1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ds,d 1 2 3 4 5 6 7 8
1 0 1 1 0 0 1 0 0
2 1 0 1 1 0 0 1 0
3 0 1 0 1 0 1 0 0
4 1 0 1 0 1 1 0 1
5 0 1 1 0 0 0 1 0
6 1 0 1 1 0 0 1 0
7 0 0 1 0 1 0 0 1
8 0 1 0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ds,d 1 2 3 4 5 6 7 8
1 0 1 1 0 1 1 0 1
2 1 0 1 1 0 0 1 0
3 0 1 0 1 0 1 0 0
4 1 0 1 0 1 1 0 1
5 0 1 1 0 0 0 1 0
6 1 0 1 1 0 0 1 0
7 0 0 1 0 1 0 0 1
8 0 1 0 1 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ds,d 1 2 3 4 5 6 7 8
1 0 1 1 0 1 1 0 1
2 1 0 1 1 0 1 1 0
3 0 1 0 1 0 1 0 1
4 1 0 1 0 1 1 0 1
5 0 1 1 0 0 0 1 0
6 1 0 1 1 0 0 1 0
7 1 0 1 0 1 0 0 1
8 0 1 0 1 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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D4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ds,d 1 2 3 4 5 6 7 8
1 0 1 1 0 1 1 0 1
2 1 0 1 1 0 1 1 0
3 1 1 0 1 0 1 0 1
4 1 0 1 0 1 1 0 1
5 0 1 1 0 0 0 1 0
6 1 0 1 1 0 0 1 0
7 1 0 1 0 1 1 0 1
8 0 1 0 1 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ds,d 1 2 3 4 5 6 7 8
1 0 1 1 0 1 1 0 1
2 1 0 1 1 0 1 1 1
3 1 1 0 1 0 1 1 1
4 1 0 1 0 1 1 0 1
5 0 1 1 0 0 0 1 0
6 1 0 1 1 0 0 1 0
7 1 0 1 0 1 1 0 1
8 0 1 0 1 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ds,d 1 2 3 4 5 6 7 8
1 0 1 1 0 1 1 0 1
2 1 0 1 1 0 1 1 1
3 1 1 0 1 0 1 1 1
4 1 0 1 0 1 1 0 1
5 0 1 1 0 0 0 1 0
6 1 0 1 1 0 0 1 0
7 1 0 1 1 1 1 0 1
8 1 1 0 1 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Each element ds,d in these matrices has one of the
two possible values:

d(s,d) =

{ 1, if a lightpath request exists
between two end nodes s and d,

0, otherwise.

The first matrix D1 is drawn at random. The next
matrix D2 is obtained by randomly converting three
zero elements in the matrix D1 into three ones. The
third matrix is obtained by randomly converting three
zeros in the matrix D2 into three ones, etc.

The total number of bees engaged in discovering
the optimal solution equals B = 10, while the total
number of alternative routes between every node pair
equals k = 5. We compared the obtained BCO–RWA
results with the optimal solution for various number of
connection requests that are to be established and dif-
ferent values of W . The comparison results are shown
in the Table 1.

The proposed BCO–RWA algorithm produced re-
sults of a very high quality which can be seen from the
Table 1. The BCO–RWA algorithm was able to obtain
the objective function values that are very close to the
optimal values of the objective function. The relative
errors or relative deviations compared to optimal solu-
tions are only few percents (less than 7% in the case
of small number of available wavelengths). In cases of
more complex problems (characterized by the higher
number of available wavelengths) the BCO–RWA has
produced the optimal solution.

The CPU times required to find the best solutions by
the BCO–RWA are very low. In other words, the BCO–
RWA was able to produce “very good” solutions in a
“reasonable” computation time. Based on great num-
ber of performed tests, it could be shown that the num-
ber of bees significantly affects the required computa-
tional time, but the solution quality does not change
much if the number of bees increases. The results for
CPU times, shown in Table 1, are obtained for the
case of I = 10 algorithm iterations. All the tests were
performed on Intel(R) Pentium(R) computer processor
with 1.73 GHz and 504 MB of RAM.

The second considered example is moderately large
network, composed of 20 nodes and 39 links, which
represents the European Optical Network (EON) [41].
The physical topology of the EON network is shown
in Fig. 5. The RWA problem for this network was also
solved in [32]. In order to solve the Max-RWA ILP
problem the authors of [32] used the LP-relaxation
technique. In order to round fractional values of the
variables they developed two heuristic algorithms,
named algorithm A and algorithm B.

We adopted the same traffic matrix (given by Ta-
ble 2), as in [27], with the aim to provide the fair com-
parison between our BCO–RWA algorithm with the
existing LP-relaxation approach in [32] and Tabu meta-
heuristic in [22].

The total number of requested lightpaths for this net-
work was 374. The second comparison of various al-
gorithms is given in Table 3 and illustrated in Fig. 6.
From Table 3 it can be seen that our BCO–RWA always
outperforms the proposed algorithms A and B, given
in [32]. Also, our BCO–RWA algorithm outperforms
the results of recently proposed Tabu metaheuristic
algorithm in [22] for the larger number of available
wavelengths. Note that our algorithm gives better per-
formances for more complicated problem. The greater
the number of wavelengths the closer the BCO–RWA
value to the upper bound. When the number of avail-
able wavelengths is equal to 22 or more, we obtained
the maximal number of established lightpaths (374).
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Table 1

The results comparison for the network shown in Fig. 4

Total number
of requested
lightpaths

Number of
wavelengths

Number of established lightpaths Relative
error
(%)

CPU time (s)

Optimal (ILP) BCO–RWA Optimal (ILP) BCO–RWA

solution solution solution solution

28 1 14 14 0 4 4.33

28 2 23 23 0 94 4.58

28 3 27 27 0 251 4.68

28 4 28 28 0 313 4.66

31 1 15 14 6.67 4 4.73

31 2 25 25 0 83 5.00

31 3 30 30 0 25 5.19

31 4 31 31 0 1410 5.21

34 1 15 14 6.67 14 5.19

34 2 27 26 3.70 148 5.50

34 3 33 33 0 216 5.64

34 4 34 34 0 906 5.64

36 1 16 15 6.25 23 5.64

36 2 27 26 3.70 325 6.09

36 3 34 34 0 788 6.11

36 4 36 36 0 1484 6.13

38 1 17 16 5.88 16 5.67

38 2 28 27 3.57 247 6.09

38 3 35 35 0 261 6.23

38 4 38 38 0 1773 6.33

40 1 17 16 5.88 31 6.00

40 2 28 27 3.57 491 6.28

40 3 35 35 0 429 6.61

40 4 40 40 0 1346 6.67

Fig. 5. The EON (European Optical Network) topology [41].

For the EON network topology, we predefined k =
15 alternative routes for each node pair (i, j) between
which a lightpath need to be established. The number
of artificial bees which participate in solving the RWA

problem was limited to B = 10 due to computational
complexity. For the maximal number of wavelengths,
the computational time to obtain the solution is about
a few tens of seconds for I = 10 performed iterations
and the best results from these iterations are presented.

We compared our CPU times with those required for
the Tabu search algorithm, proposed by Dzongang, et
al. in [22]. They reported that “depending on the in-
stance, the computing time of Tabu for each run ranges
between 40 and 59 seconds for the EON network”.
These authors used Pentium 4, 2.4 GHz. Depending on
the instance, the CPU times of the BCO–RWA algo-
rithm varies between 10 and 40 seconds (depending on
the number of bees and the number of algorithm iter-
ations), for the EON network, which is similar to the
CPU times of the Tabu search approach. On the other
hand, the higher the number of available wavelengths,
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Table 2

Traffic matrix for the EON network [27]

i/j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Σ
0 0 1 2 1 1 0 2 0 1 0 1 2 0 2 0 0 1 1 1 0 16

1 1 0 0 2 0 0 1 2 2 1 2 0 1 1 2 0 2 0 1 1 19

2 0 2 0 0 0 1 1 1 2 1 1 1 1 0 2 1 2 0 1 0 17

3 0 1 0 0 2 0 0 0 2 1 2 0 2 2 1 2 2 1 0 1 19

4 0 2 2 1 0 2 1 2 2 0 2 1 1 0 2 2 2 1 2 2 27

5 1 0 1 0 2 0 1 0 2 0 2 0 0 2 2 2 1 0 1 0 17

6 0 0 0 0 0 0 0 1 2 0 1 0 1 1 0 0 2 1 0 0 9

7 1 0 2 0 1 0 2 0 2 1 2 2 2 1 1 2 2 2 2 1 26

8 2 1 0 2 1 0 1 1 0 0 1 1 0 2 0 2 0 2 1 0 17

9 0 1 0 0 0 2 0 0 1 0 0 2 0 2 2 2 1 0 2 0 15

10 1 2 2 1 2 0 2 1 2 1 0 2 1 2 2 0 2 0 1 0 24

11 1 1 0 1 1 2 1 0 1 0 0 0 0 0 2 1 0 2 0 0 13

12 2 2 2 2 0 0 1 1 1 0 1 2 0 0 0 1 1 0 2 1 19

13 0 0 2 2 0 2 0 1 2 1 2 1 1 0 2 1 1 0 0 1 19

14 1 0 2 0 1 0 0 1 0 2 2 2 0 2 0 2 2 1 2 1 21

15 1 0 1 0 1 1 2 0 0 2 2 0 1 1 2 0 1 2 1 2 20

16 0 0 1 2 2 1 1 2 0 0 1 2 0 2 2 1 0 1 1 1 20

17 0 1 2 0 2 2 2 0 1 2 2 0 2 1 0 1 0 0 2 0 20

18 1 0 1 0 2 2 1 0 2 1 2 1 0 2 0 1 1 1 0 2 20

19 1 2 2 0 1 0 0 0 0 1 0 0 0 2 2 0 1 2 2 0 16

Σ 13 16 22 14 19 15 19 13 25 14 26 19 13 25 24 21 24 17 22 13 374

Table 3

The results comparison for EON network

Number of
wavelengths

Number of established lightpaths UB – Upper
Bound [32]

(UB-BCORWA)/UB × 100
(%)

Algorithm:

A [32] B [32] Tabu [22] BCO-RWA

10 262 250 281 264 285 7.37

11 274 265 294 285 301 5.32

12 284 278 307 301 317 5.05

13 295 290 318 315 329 4.25

14 310 308 328 326 337 3.26

15 316 314 338 338 344 1.74

16 319 318 345 348 350 0.57

17 333 325 352 354 356 0.56

18 339 334 356 361 362 0.28

19 340 337 361 365 367 0.54

20 341 340 366 370 370 0

21 347 347 370 372 373 0.27

22 355 352 372 374 374 0

23 361 361 374 374 374 0

24 367 364 374 374 374 0

25 370 367 374 374 374 0
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G.Z. Marković et al. / Routing and wavelength assignment in all-optical networks 11

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Fig. 6. The result comparison of various algorithms.

the higher the chance that the BCO–RWA algorithm
will outperform Tabu approach (see Fig. 6).

The CPU times depend on the problem size, the total
number of requested lightpaths, prescribed number of
alternative routes for every node pair, prescribed num-
ber of algorithm iterations, as well as the total number
of bees. In both of the performed numerical experi-
ments the total number of bees was equal to B = 10.
Both experiments were finished after I = 10 itera-
tions. The total number of requested lightpaths, the
prescribed numbers of alternative routes and the total
number of links were different in two considered net-
work examples. All these factors together caused dif-
ferences in the required CPU times. The more detailed
analyses of the CPU times and the BCO–RWA algo-
rithm’s complexity will be done in the future research.

6. Conclusion

We propose in this paper the BCO–RWA heuris-
tic algorithm tailored for the routing and wavelength
assignment problem (RWA) in all-optical networks.
The proposed methodology is based on the concepts
of collective intelligence. There are no theoretical re-
sults at this moment that could support proposed ap-
proach. Usually, development of various metaheuristic
was based on experimental work in initial stage. Good
experimental results usually motivated researchers to
try to produce some theoretical results. The concepts
proposed in this paper are not exception in this sense.

The proposed BCO–RWA algorithm has been able
to produce optimal or near-optimal solutions in a rea-
sonable computation time. The results obtained by ap-
plying our algorithm show that the network block-
ing performance, in terms of number of established
lightpaths could be improved significantly compared to
some previously proposed algorithms. The obtained
results indicate that the development of new models
based on swarm intelligence principles could signifi-
cantly contribute to the solution of complex telecom-
munication problems.
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tičkim mrežama sa talasnim multipleksiranjem, in: Proceed-
ings of TELFOR 2003 Conference, Dj. Paunović, ed., Belgrade,
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Vol. 1, IEEE, Niš, 2005, pp. 303–306.
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