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The Bee System (an artificial bee swarm) is introduced in this paper. The proposed
approach is applied to the Traveling Salesman Problem. The obtained results are very
promising. The potential applications of the developed Bee System in the field of trans-
portation engineering are discussed. The Bee System represents the new, successful appli-
cation of emergent techniques based on natural metaphors, such as simulated annealing,

genetic algorithms, and neural networks, to the complex engineering and management
problems.
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1. Introduction

Natural systems teach us that very simple individual organisms can form systems
capable of performing highly complex tasks by dynamically interacting with each
other. Bee swarm behavior in nature is primarily characterized by autonomy and
distributed functioning and self-organizing. In the last couple of years, the re-
searchers started studying the behavior of social insects in an attempt to use the
Swarm Intelligence concept in order to develop various Artificial Systems. The de-
velopment of Artificial Systems does not entail the complete imitation of natural
systems, but explores them in the search for ideas and models.

It is of course of great importance to investigate both advantages and disadvantages
of autonomy, distributed functioning and self-organizing in relation to traditional
engineering methods that rely on control and centralization. The first goal of this
paper is to acquaint the reader with the applications of swarm intelligence to date
in engineering, management and control, and to indicate the directions for future
research in this area. The main goal of this paper is to introduce the Bee System
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(an artificial bee swarm) that represents a new approach in the field of Swarm Intel-
ligence. The third goal of the paper is to show how we can use proposed approach
in development of Artificial Systems aimed at solving complex problems in trans-
portation engineering. The organization of the paper is described below. Solving
complex engineering problems by emergent techniques based on natural metaphors
is discussed in Section 2. Basic characteristics of the Swarm Intelligence are ex-
plained in Section 3. The Bee System (an artificial bee swarm) is introduced in
Section 4. Section 5 is devoted to the experimental study of the Bee System. Po-
tential applications of the Bee System are discussed in Section 6. Conclusions and
recommendations for further research are given in section 7.

2. Solving Complex Engineering Problems by Emergent Techniques
Based on Natural Metaphors

Combinatorial Programming is utilized for solving optimization problem that have
combinatorial and/or discrete structure. Integer Programming, Dynamic Program-
ming and Graph Theory techniques are traditional approaches for solving combi-
natorial optimization problems. A great number of practical real-world problems
was formulated and solved using these techniques during the last four decades. It
is important to note however that the majority of real-world problems solved by
some of the optimization techniques were of small dimensionality. Many engineering
problems are combinatorial by their nature. Most of the combinatorial optimiza-
tion problems are difficult to solve either because of the large dimensionality or
because it is very difficult to decompose then into smaller sub-problems. These are
most commonly found to be NP-complete problems that cannot be solved exactly
in polynomial time. Typical representatives of this type of problems are the vehicle
fleet planning and static and dynamic routing and scheduling of vehicles and crews
for airlines, railroads, truck operations and public transportation services, design-
ing utility and transportation networks and optimizing alignments for highways and
public transportation routes through complex geographic spaces, different locations
problems, etc.

Many times in real life we only need a "good” solution. In other words, very often
the decision makers are satisfied with sub-optimal solution obtained by some " good”
heuristics ("Good” heuristics assumes, first of all, polynomial computer time and
small computer memory requirement).

In recent years, the so-called metaheuristic algorithms have increasingly been used
in solving difficult combinatorial optimization problems. These include the simu-
lated annealing ! 2 3, genetic algorithms 4 ®, and tabu search ® 7 8. Simulated
annealing and genetic algorithms are based on the principles of respective analogies
with the processes occurring in nature.

The simulated annealing technique is one of the methods increasingly used in the
last few years in solving complex combinatorial problems. Kirkpatrick et al. ? and
separately Cerny ® were the first to suggest the simulated annealing technique in
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solving combinatorial optimization problems. This method is based on the analogy
with certain problems in the field of statistical mechanics found in the studies of
Metropolis et al. !. The simulated annealing technique has already been used in
solving complex transportation engineering problems # 1© 1.

Genetic algorithms represent search techniques based on the mechanics of nature
selection used in solving complex combinatorial optimization problems. These algo-
rithms were developed by analogy with Darwin’s theory of evolution and the basic
principle of the ”survival of the fittest.” The most significant results in the field of
genetic algorithms were achieved by Holland * and Goldberg °. Genetic algorithms
have been extensively used in the last few years in solving complex transportation
engineering problems 12 13 14 15 16 17 18 19 20 21 22 23 24 Recent successful applica-
tions of genetic algorithms are optimizing 3-dimensional highway alignments ** 26
and scheduling interdependent waterway transportation projects 7.

Artificial neural networks  ® are also very successful engineering tools inspired
by biology. Artificial neural networks are composed of the elements that function
similarly to a biological neuron. These elements are organized in a way that is remi-
niscent of the anatomy of a brain. In addition to this superficial similarity, artificial
neural networks display a striking number of the brain’s properties. For example,
they are able to learn from experience, to apply to new cases generalizations de-
rived from previous instances, and to abstract essential characteristics of input data
that often contain irrelevant information. In the 1990s, hundreds of papers were
published applying neural network models to different engineering problems 3.
Often times in some of the decision-making problems that are combinatorial by
nature there exist multiple conflicting criteria. Development of the hybrid mod-
els (models based on the combination of the Multiple Objective Decision-Making
techniques and the Metaheuristics Techniques) for solving certain class of difficult
combinatorial optimization problems in engineering has already been a significant
contribution to the current research in the field.

The successful applications of emergent techniques based on natural metaphors,
such as simulated annealing, genetic algorithms, and neural networks, to the com-
plex engineering and management problems are certainly encouraging; they most
definitely point out to the natural systems as a source of ideas and models for
development of various artificial systems.

3. Basic Characteristics of the Swarm Intelligence

Social insects (bees, wasps, ants, termites) have lived on Earth for millions of years,
building nests and more complex dwellings, organizing production and procuring
food. It has also been noted that they care about order and cleanliness, occasion-
ally move around, have a communication and warning system, maintain an army,
wage wars, and divide labor. In addition, the colonies of social insects are very
flexible and can adapt well to the changing environment. This flexibility allows the

colony of social insects to be robust and maintain its life in spite of considerable
disturbances.
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The dynamics of the social insect population is a result of the different actions and
interactions of individual insects with each other, as well as with their environment.
The interactions are executed via multitude of various chemical and/or physical
signals. The final product of different actions and interactions represents social in-
sect colony behavior. Interaction between individual insects in the colony of social
insects has been well documented. The examples of such interactive behavior are
bee dancing during the food procurement, ants’ pheromone secretion, and perfor-
mance of specific acts which signal the other insects to start performing the same
actions. These communication systems between individual insects contribute to the
formation of the ”collective intelligence” of the social insect colonies. Recently, the
term ”Swarm Intelligence”, denoting this ”collective intelligence”, has come into
use 28 29 30 31

The self-organization of the ants is based on relatively simple rules of individual
insect’s behavior 32 33 34 35 36 [p the majority of ant species a number of ”scouts”
leave the nest foraging for food 37. The ants successful at finding food leave behind
them the pheromone trail that the other ants follow in order to reach the food. The
appearance of the new ants at the pheromone trail reinforces the pheromone signal.
This comprises typical autocatalytic behavior, i.e., the process that reinforces itself
and thus converges fast. The "explosion” in such processes is regulated by a certain
limitation mechanism. In the ant case, the pheromone trail evaporates with time.
In this behavioral pattern the decision of an ant to follow a certain path to the food
depends on the behavior of his nestmates. At the same time, the ant in question
will also increase the chance that the nestmates leaving the nest after him follow
the same path. In other words, one ant’s movement is highly determined by the
movement of previous ants.

The important result of the Artificial System development that was based on the
Swarm Intelligence is the creation of the Ant System. Ant System *® 3 is a relatively
new metaheuristic for hard combinatorial optimization problems. Dorigo et al. 3°
applied Ant System to the classical Traveling Salesman Problem. They also tested
the approach proposed on asymmetric Traveling Salesman Problem, the guadratic
assignment and the job-shop scheduling problem. Bullnheimer et al. 40 4! used the
Ant System to solve the Vehicle Routing Problem in its basic form (homogenous
fleet, capacity restriction, distance restriction, one central depot) and obtained very
good results.

4. Bee System
4.1. Bees in the nature
By examining the bees’ behavior, the researchers tried is to describe how bee colonies

function in nature. Self-organization of the bees is based on a few relatively simple
rules of individual insect’s behavior 42 43 44 45 46 47 48 49 50 51 52 53 54 55 Tp gpjite
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of the existence of a large number of different social insect species, and variation in
their behavioral patterns, it is possible to describe individual insects’ as capable of
performing a variety of complex tasks 5. The best example is the collection and
processing of nectar, the practice of which is highly organized. Each bee decides to
reach the nectar source by following a nestmate who has already discovered a patch
of flowers. Each hive has a so-called dance floor area in which the bees that have
discovered nectar sources dance, in that way trying to convince their nestmates to
follow them. If a bee decides to leave the hive to get nectar, she follows one of
the bee dancers to one of the nectar areas. Upon arrival, the foraging bee takes
a load of nectar and returns to the hive relinquishing the nectar to a food storer
bee. After she relinquishes the food, the bee can (a) abandon the food source
and become again uncommitted follower, (b) continue to forage at the food source
without recruiting the nestmates, or (¢) dance and thus recruit the nestmates before
the return to the food source. The bee opts for one of the above alternatives with
a certain probability. Within the dance area the bee dancers ”advertise” different
food areas. The mechanisms by which the bee decides to follow a specific dancer
are not well understood, but it is considered that "the recruitment among bees is
always a function of the quality of the food source” 56. It is also noted that not
all bees start foraging simultaneously. The experiments confirmed that "new bees

begin foraging at a rate proportional to the difference between the eventual total
and the number presently foraging”.

4.2. Artificial bees

Bees’ behavior in nature has been a great inspiration for the authors of this paper
and a source of ideas and models for development of various artificial systems ca-
pable to solve complex engineering and management problems. Qur artificial bee
colony behaves partially alike, and partially differently from bee colonies in nature.
The bee system described in this paper represents a significant modification and
improvement of our previous work 57. Qur artificial system is the system composed
of a number of precisely defined elements (individuals). We define the behavior
rules of our artificial bees (agents) and simulate the interaction between them. In
this way, different scenarios with different rules can be simulated and explored.

A large portion of social insects’ activities is tied to the food foraging. It is known
that honeybees "normally spend the last part of their life collecting food” *%. Also,
they ”spend a considerable portion of their life span learning and improving their
foraging skills” *°. Every bee colony has scouts that are colony’s explorers 5. The
explorers do not have any guidance while looking for food. They are primarily
concerned with finding any kind of food source. As a result of such behavior, the
scouts are characterized by low search costs and a low average in food source qual-
ity. Occasionally, the scouts can accidentally discover rich, entirely unknown food
sources. In the case of artificial bees, the artificial scouts attempting to solve dif-
ficult combinatorial optimization problems could have as a task the fast discovery
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of the group of feasible solutions. Some of those feasible solutions to the difficult
combinatorial optimization problems could then prove to be solutions of very good
quality.

In the case of honeybees, the recruitment rate represents a ” measure” of how quickly
the bee colony finds and exploits a newly discovered food source. Artificial recruit-
ing could similarly represent the " measurement” of the speed with which the feasible
solutions or the "good quality” solutions are found.

The cooperation between the insects decreases foragers’ costs in finding new food
sources. This suggests that cooperation between artificial bees would also allow for
the fast discovery of the feasible solution.

It is also known that cooperation increases the quality of the food sources located
by foragers. This implies that cooperation could also help us find the best solutions
of the difficult combinatorial optimization problems.

The survival and progress of the bee colony is dependent upon rapid discovery and
efficient utilization of the best food resources. In other words, the successful solu-
tion of difficult engineering problems (especially those that need to be solved in real
time) is connected to the relatively fast discovery of ”good solutions”.

4.3. Solving the traveling salesman problem by the bee sysiem

The primary goal of this paper is to explore the possible applications of swarm intel-
ligence (and especially collective bee intelligence) in solving complex transportation
engineering problems. The development of the new heuristic algorithm for the Trav-
eling Salesman Problem will serve as an illustrative example for such applications
and will show the characteristics of the proposed concept. The well known Traveling
Salesman problem is defined in the following way: Given n nodes, find the shortest
itinerary that starts in a specific node, goes through all other nodes exactly once
and finishes in the starting node.

We define an artificial bee environment. This environment is an artificial represen-
tation of the space. Our artificial bees (agents) perform only activities defined by
our model and a corresponding computer program. We define the way in which ar-
tificial bees communicate with each other. In other words, we perform Multi-agent
simulation.

Let us denote by G = (N, A) the network in which the bees are collecting nectar
(the graph in which the traveling salesman route should be discovered). Let us also
randomly locate the hive in one of the nodes. When foraging, the bees are trying
to collect as much nectar as possible. Let us also assume that the nectar quantity
that is possible to collect flying along a certain link is inversely proportional to the
link length. In other words, the shorter the link, the higher the nectar quantity col-
lected along that link. This means that the greatest possible nectar quantity could
be collected when flying along the shortest traveling salesman route. Our artificial
bees will collect the nectar during the certain prescribed time interval. After that,
we will randomly change the hive position. The bees will start to collect the nectar
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from the new location. We will then again randomly change the hive location etc.
The iteration in searching process represents one change of the hive position. We
assume that our artificial bees live in an environment characterized by the discrete
time. Each iteration is composed of a certain number of stages. The stage is an
elementary time unit in bees’ environment. During one stage the bee will visit s
nodes, create partial traveling salesman tour, and after that return to the hive (the
number of nodes s to be visited within one stage is prescribed by the analyst at
the beginning of the search process). In the hive the bee will participate in a deci-
sion making process. The bee will decide whether to abandon the food source and
become again uncommitted follower, continue to forage at the food source without
recruiting the nestmates, or dance and thus recruit the nestmates before returning
to the food source. Let us denote by B the total number of bees in the hive and by
B(u, z) the total number of bees collecting nectar during stage u (u = 0, 1, 2, ...,
[lﬁli]) in iteration z.

We will assume that at the beginning of every iteration z all bees are in the hive, i.e.:

B(0,2) =0 (1)

It is noted in the nature that not all bees start foraging simultaneously. In the
case of artificial bees we have been increasing the number of foraging bees in every

subsequent, stage in the following way. Let us introduce the binary variables by(u,
z), defined as:

1, if k-th bees participates in foraging during stage u
br(u,z) = in iteration z (2)
0, otherwise

k=1,2,...,B
u=0,1,2,.., ['”L“]
2=1,2,... M

where:
M - maximum number of iterations.

Some bees will start foraging in the first stage. The remaining bees will join the
nestmates in the second stage, or in the third stage, or in the fourth stage, etc.
Once bee starts foraging, it will remain "active” until the end of the considered
iteration. We describe the foraging activity of every bee by the array composed of
0’s and 1’s. The array [1,1,1, ....,1] describes foraging activity of the bee that has
been foraging from the first stage; the array [0,0,0,1,1,1, ....,1] describes foraging
activity of the bee that has been foraging from the fourth stage, and so forth.
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Let us also introduce the binary variables hy(u, z), defined in the following way:

_J 1, ifw>rg(u,z) and be(u—1,2) =0
hk(u,z)_-{ 0, otherwise

(3)

where:
w - the parameter given by the analyst (0 < w < 1),
rx(u, z) - the random number taken form the unit interval [0,1].

The binary variables hj(u, 2) indicate the stage in which particular bee starts with
foraging. For every bee k that has not been participating in the foraging process in
the stage (u-1), we have chosen the random number 7 (u, z). The k-th bee will join
her nestmates in foraging during stage u, if the following relation has been satisfied:

w > r(u, ) (4)

The higher the value of the parameter w given by the analyst, the higher the chance
for any bee to become foraging. That is, practically all bees from the hive will start
foraging process rather quickly. The smaller value of the parameter w corresponds
with the slow increase of the number of foraging bees.

The binary variable bi(u, z) equals:

br(u,2) = be(u — 1, z) + hg(u, 2) (5)

The total number of foraging bees during u-th stage in the z-th iteration equals:
B(u,z) = Zbk(u z (6)

During any stage, bees are choosing nodes to be visited in a random manner. Logit
model is one of the most successful and widely accepted discrete choice model. We
have assumed that the probability of choosing node j by the k-th bee, located in
the node ¢ (during stage u + 1 and iteration z) equals:

—ad;; z

L8 z—1 B
Erzmnx(x—b_ y miilr) Z‘ = Ok (u: Z),
k S —ady; =) 3 3 J € Nk(u,z),
pij(u +1,2)= z‘ . Zr:mlx[:—b.l) nip(r) Vk, u, 2 (7)
ENg(u,=

otherwise
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where:
i,j— node indexes (i,7 = 1, 2, ..., |[N]),
dij— length of link (3, 7),
k— bee index (k = 1,2, ..., B),
z— iteration index (z = 1, 2, ..., M),
nq(r)— total number of bees that visited link (7,1) in r-th iteration,
b— “memory length”? ,

gr(u,z)— last node that bee k visits at the end of stage u in iteration z,
Ni(u,z)— set of unvisited nodes for bee k at stage u in iteration z (in one

stage bee will visits s nodes; we have |Ng(u, z)| = |N| — us),
a— input parameter.

Let us discuss relation (7) that we propose in a more details. The greater the
distance between node i and node j, the lower the probability that the k-th bee
located in the node i will choose node j during stage u and iteration z. The distance
d;; is obviously a very important factor influencing the bee’s choice of the next node.
The influence of the distance is lower at the beginning of the search process. The
greater the number of iterations z, the higher the influence of the distance. This is
expressed by the term z in the nominator of the exponent (relation (7)). In other
words, at the beginning of the search process bees have more freedom of flight. They
have more freedom to search the solution space. The more iterations we make, the
bees have less freedom to explore the solution space. The more we are approaching
the end of the search process, the more focused the bees are on the flowers (nodes)
in the neighborhood. Qur artificial bees have memory and they can remember how
many bees visited a certain link during last b iterations. The greater the total
number of bees that visited a certain link in the past, the higher the probability of
choosing that link in the future. This represents the interaction between individual
bees in the colony.

For every bee we now know the nectar quantity collected by the bee (the length
of the partial traveling salesman tour). After returning to the hive bees relinquish
the nectar to a food storer bee. After relinquishing the food, the bee is making
the decision about abandoning the food source or continuing the foraging at the
food source. It is assumed in this paper that every artificial bee (agent) can obtain
the information about nectar quantity collected by every other artificial bee. The
probability that the bee k will at beginning of the stage u + 1 use the same partial
tour that is defined in stage u in iteration z equals:

Lk(u.:)—miﬂrew(u_x)(Lr(u.:}) .
uzr

pr(u+1,2)=e” (8)

aWhile foraging in stage u, every artificial bee has the ability to notice the total number of bees
in every link. Every artificial bee has the same ability for previous stages as well. That is,
artificial bees have the capacity to remember former bee assignments in the network. However,
bee recollection is limited. The maximum number of stages that bee can recall represents memory
length.
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where Li(u, z) is the length of partial route that is discovered by bee k in stage u
in iteration z.

We can see from relation (8) that if a bee has discovered the shortest partial traveling
salesman tour in stage u in iteration z, the bee will fly along the same partial tour
with the probability equal to one. The longer the tour that the bee has discovered,
the smaller the probability that the bee will fly again along the same tour. When
bee decides not to abandon the food source she can: (a) continue of foraging at the
food source without recruiting the nestmates; (b) fly to the dance floor area and
start dancing, thus recruiting the nestmates before the return to the food source.
The bee opts for one of the above alternatives with a certain probability. Within
the dance area the bee dancers "advertise” different food areas. The mechanisms
by which the bee decides to follow a specific dancer are not well understood, but it
is considered that ”the recruitment among bees is always a function of the quality
of the food source” *®. Since the bees are, before all, social insects (the interaction
between individual bees in the colony has been well documented), it is assumed in
this paper that the probability p* of an event that the bee will continue foraging at
the food source without recruiting the nestmates is very low:

<1 9

After relinquishing the food, and after making the decision to continue foraging at
the food source, the bee flies to the dance floor and starts dancing with the proba-
bility equal to (1 - p*). Bee dancing represents the interaction between individual
bees in the colony. This kind of communication between individual bees contributes
to the formation of the collective intelligence of the bee colony.

In the case when at the beginning of stage u + 1, bee does not use the same partial
traveling salesman tour, the bee will go to the dancing area and will follow another
bee(s). We assume that every partial traveling salesman tour £ that is being adver-
tised in the dance area has two main attributes: (a) the total length, and (b) the
number of bees that are advertising the partial route. We introduce the normalized
value of the total length of the partial traveling salesman tour and the normalized
value of the number of bees advertising the partial tour. Both normalized values
are defined in the following way: (a) Both normalized values can take any value
between 0 and 1; (b) The smaller the total length normalized value the better the
partial tour; (c) The bigger the number of bees normalized value the better the
partial tour.

Let us denoted by Y(u,z) - the set of partial tours that were visited by at least
one bee and by Bg(u,z) - the number of bees that discovered partial route £&. The
normalized value of the partial route length equals:
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e (L)) #

LE(u‘zz)_minrey[u-'x)(Li"(“lz)) '_E"';%E z)(Lr(U-, z)),
aE(u, Z) =— maerY(u.:)(Lr(ulz))_mlanY(u.z)(L"'(u7z)}’ J c NJ;(“,Z), (10)
Vk,u,z
0, otherwise

The normalized value of the number of bees advertising the partial tour equals:

max (Br(u,
rey(M,( (u,2)) #

BE(ul’:)"’mi“rEY(u.,Z)(Br(“lz)) re‘;}%& z)(Bf'{ul Z)).
BE("= z) = MaX,gy (u,2)(Br(1,2))—Min gy (u,z)(Brlu,2))? e N;;('u,z), (11)
vk,u,z

0, otherwise

We have assumed in this paper that the probability that the partial route £ will be
chosen by any bee that decided to choose the new route equals:

epﬁg(u.z)—fiag{u,z)
(u,2)— O (u,z) £ € Y(T.l., Z), V’U,Z (12)

p&(u’ z) =
ZrGY(u,z) eple
where:
p, B - parameters given by the analyst.

Before relocating the hive to the next location we tried to improve the solution
obtained by the bees in current iteration by applying different tour improvement
algorithms. The most frequently used tour improvement algorithms are based on
k-opt procedure. The basic idea is to replace subset of k arcs in previously defined
tour by the subset of new arcs with same cardinality and smaller total length such
that new shorter tour will result. Complexity of k-opt algorithm is O(n*) where n
is number of nodes considered in TSP instance. In the literature researchers have
used 2-opt and 3-opt algorithms most frequently ®°. In this paper we used 2-opt
algorithm, 3-opt algorithm and modified 3-opt algorithm (this modified algorithm
will be explained later in the paper). Creating of the partial Traveling Salesman
Tours is shown in Fig. 1.

Four bees chose their first nodes and created four different Traveling Salesman tours
during the first stage. The second stage shows three bees continuing to further
develop their tours. The fourth bee did not use the same partial traveling salesman
tour in the second stage. This bee started to follow another bee. All four bees
continued to further develop partial Traveling salesman tours during the third stage.

5. Experimental Study of the Bee System

The proposed Bee System was tested on a large number of numerical examples. In
all the cases one of tour improving algorithms has been employed. There are three
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Fig. 1. Creation of the partial Traveling Salesmen Tours.

sets of results that correspond to 2opt, 3-opt and modified 3-opt (”short version”)
tour improving algorithm respectively. The benchmark problems were taken from
the following Internet address:

http://www.iwr.uni-heidelberg.de/iwr/comopt /software/ TSPLIB95/tsp/. The fol-
lowing 10 problem instances were considered: Eil51.tsp, Berlin52.tsp, St70.tsp,
Pr76.tsp, Kroal00.tsp, Eil101.tsp, Tsp225.tsp, A280.tsp, Pcb442.tsp and Pr1002.tsp.
Problem instances Pcb442.tsp and Pr1002.tsp were considered only with modified
3opt ("short version”) tour improving algorithm. All tests were run on an IBM
compatible PC with PIII processor (533MHz). Tables 1, 2 and 3 present the results
obtained by Bee System when search is limited on 100 cycles.

From the table 1 it could be seen that Bee System reinforced with 2-opt tour
improvement heuristic provides excellent results for small size of TSP instances.
However, if the size of instances is increased the solution quality will start to fall
down (last column in table 1). In order to increase the solution quality we also
coupled the Bee System with the 3-opt heuristic algorithm (Table 2).

The Bee System enriched with 3-opt heuristic algorithm produced significantly bet-
ter results than the Bee System enriched with 2-opt heuristic algorithm. On the
other hand, 3-opt algorithm is time consuming because the algorithm explores all
possible combinations of three arcs replacement. There is a possibility to run the
algorithm much faster with a small chance of diminishing solution quality. One
simple way to do it (that was applied in this paper) is to modify 3-opt algorithm
and to reduce the size of the searching space. In this paper, the reduction of the
search space was done in the following way: three arcs were considered removed if
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Table 1. The results obtained by the Bee System enriched with 2-opt heuristic

Problem Optimal The best  (B-0)/O Time Average (A-0)/0
(Number Value value (%) required value (%)
of nodes) (0) obtained to find  obtained
by the Bee the best by the Bee
System solution  System over
(B) (sec) 20 runs (A)
Eil51 (51) 428.87 431.12 0.53 44 433.76 1.14
Berlin52 (52) 7544.37 7544.37 0.00 18 7634.37 1.19
St70 (70) 677.11 678.62 0.22 238 684.28 1.06
Pr76 (76) 108159.00 108790.00 0.58 127 109444.60 1.19
Kroal00 (100) 21285.40 21441.50 0.73 58 21575.70 1.36
Eil101 (101) 640.21 642.45 0.35 146 665.62 3.97
Tsp225 (225) 3859.00 4065.56 5.35 2076 4113.71 6.60
A280 (280) 2586.77 2740.63 5.95 1855 2784.81 7.66

their corresponding starting nodes were ”close enough” (if the distances between
the starting nodes were greater than the threshold value that we prescribed, the
corresponding arcs were not removed). The results obtained by the Bee System
enriched with modified 3-opt algorithm are given in the table 3.

Table 2. The results obtained by the Bee System enriched with 3-opt heuristic

Problem Optimal The best (B-0)/0 Time Average (A-0)/0
(Number Value value (%) required value (%)
of nodes) (0) obtained to find obtained
by the Bee the best by the Bee
System solution  System over
(B) (sec) 20 runs (A)
Eil51 (51) 428.87 428.87 0.00 37 428.87 0.00
Berlin52 (52) 7544.37 7544.37 0.00 1 7544.37 0.00
5t70 (70) 677.11 677.11 0.00 22 677.11 0.00
Pr76 (76) 108159.00 108159.00 0.00 11 108159.00 0.00
Kroal00 (100) 21285.40 21285.40 0.00 10 21285.40 0.00
Eil101 (101) 640.21 640.21 0.00 1741 643.05 0.44
Tsp225 (225) 3859.00 3876.05 0.44 5153 3905.32 1.20
A280 (280) 2586.77 2600.34 0.53 13465 2627.45 1.57

We can see from the tables 1, 2 and 3 that the proposed Bee System produced
results of a very high quality. The Bee System was able to obtain the objective
function values that are very close to the optimal values of the objective function.
In all instances with less than 100 nodes the Bee System has produced the optimal
solution (tables 2 and 3). The times required to find the best solutions by the Bee
System are very low. In other words, the Bee System was able to produce ”very
good” solutions in a "reasonable amount” of computer time. The best solutions of
the two studied benchmark problems discovered by the Bee System are presented
in the figures 2 and 3.
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Table 3. The results obtained by the Bee System enriched with 3-opt heuristic

Problem Optimal The best  (B-0)/O  Time Average (A-0)/O0
(Number Value value (%) required value %)
of nodes) (0) obtained to find obtained
by the Bee the best by the Bee
System solution  System over
(B) (sec) 20 runs (A)
Eil51 (51) 428.87 428.87 0.00 29 428.87 0.00
Berlin52 (52) 7544.37 7544.37 0.00 0 7544.37 0.00
St70 (70) 677.11 677.11 0.00 T 677.11 0.00
Pr76 (76) 108159.00  108159.00 0.00 2 108159.00 0.00
Kroal00 (100) 21285.40 21285.40 0.00 10 21285.40 0.00
Eil101 (101) 640.21 640.21 0.00 61 643.07 0.45
Tsp225 (225) 3859.00 3899.90 1.06 11651 3909.69 1.31
A280 (280) 2586.77 2608.33 0.83 6270 2632.42 1.76
Pcb442 (442) 50783.55 51366.04 1.15 4384 51756.89 1.92
Pri002 (1002) 259066.77  267340.70 3.19 28101 268965.60 3.82

6. Some Potential Applications of the Bee System in
Transportation Engineering

In this section we will shortly describe some of the potential applications of the
Bee System in development of Artificial Systems aimed at solving complex problems
in transportation engineering. The following examples were chosen among a great
number of potential applications of the developed Bee System.

400 -

350 -

300 -

250 -

200 -

&

150 1

100 \ T T : T
100 200 300 400 500 600

Fig. 2. Bee System, 100 cycles solution to the TSP problem instance Tsp225.tsp.

Planning and designing the transit, airline, or utility network networks is an ex-
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Fig. 3. Bee System, 100 cycles solution to the TSP problem instance Pr1002.tsp.

tremely complex planning task combinatorial by its nature. The chosen network
shape and the vehicle frequency on individual links directly affect the business re-
sults of the operator and the level of service provided to passengers. Passengers
in intercity transport and packages are very frequently routed from the origins to
the destinations through one or more hubs. Instead of routing the passengers from
each origin directly to their destination, the hub and spoke system transports pas-
sengers and packages through the hubs. Highly competitive environment in air
transportation, logistics and communication assumes the best possible hub and
spoke architecture. It should also be underlined that when transportation is to be
established among a large number of nodes, the dimensions of the problem become
very large. The transportation network planning and design problem is the ideal
problem for the application of the developed Bee System.

The classical vehicle routing problem consists of finding the set of routes that min-
imizes transport costs. Further variations of the classical vehicle routing problem
include existing few depots in the network, doing service with a few types of differ-
ent vehicles, uncertain demand at nodes, or existing time windows for doing service
at certain nodes. Developing hybrid models (Bee System, Fuzzy Logic and Visual-
ization) for solving complex vehicle routing and scheduling problems would be of a
great benefit for both the distribution companies, and the wider public.

The highway alignment problem assumes selection of the "best” path to connect
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two points in the space. The "best” alignment minimizes total costs and satisfies
the engineering design, operational constraints. Developing hybrid model (Bee Sys-
tem and Fuzzy Logic) for solving highway alignment problem would be of a great
benefit for transportation agencies, as well as to the wider public.

Different versions of the Dial-A-Ride problem are found in every day practice: trans-
portation of people in low-density areas, transportation of the disabled and elderly
persons, and parcel pick-up and delivery service in urban areas are some of the
examples. The dynamic Dial-A-Ride problem could be described as follows: all
customers demanding fast service define pick-up and delivery location, as well as
preferred beginning of the service. The problem is to assign every new passenger
request to one of the vehicles already on the network, and to design a new route
and schedule for this vehicle. This assignment must be done in real time.

The Gate Assignment Problem represents the assignment of arriving aircraft to
available gates. During last decade, with the increase of number of flights and the
number of passengers in air transportation, the airport gate assignment problem
became much more complex. This problem is a difficult combinatorial optimization
problem. By its nature this problem is also dynamic. Originating passengers walk
from the check-in to the departure gate. Transfer passengers walk from the arriving
gate to the new departing gate, while terminating passengers walk from arriving
gate to the baggage claim area. The total passenger walking distance depends on
the passenger transfer volume between every pair of aircrafts, as well as the distance
between every pair of gates. It is very logical to try to minimize the total passenger
walking distance. While solving this problem it is necessary to take into account
different operational constraints. Developing Decision Support Systems based on
the Bee System for the aircraft gate assignments would be also of great importance
for the mitigation of airline schedule disturbances.

7. Conclusion

The Bee System that was developed in this paper has been successfully applied to
the classical Traveling Salesman Problem. The results obtained are considered to be
very good. This successful application of the Bee System to the difficult combina-
torial optimization problem is very encouraging as it confirms the value of natural
systems as a source of ideas and models for development of various useful artificial
systems.

In future research, one of the main goals should be the exploration of the differ-
ent types of artificial bee organizations and interactions and their influence on the
dynamics of the population. There are questions relating to the above mentioned
characteristics of the social insects that need to be further answered in future re-
search: (a) Should artificial bees (agents) be equal, or should there sometimes be
several types of agents? (b) Are there further possibilities for hybrid combination of
swarm intelligence and other artificial intelligence approaches and different heuristic
algorithms? (c¢) Could swarm intelligence be combined with other techniques (e.g.
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Fuzzy Sets Theory techniques) for solving complex engineering problems charac-
terized by uncertainty? (d) What are the costs and benefits of the development
of Artificial Systems based on natural Swarm Intelligence in engineering, computer
science and management science?

Swarm Intelligence (Ant System) has already been applied in some other engineer-
ing areas such as robotics. The results obtained are also very good.

In further research, models inspired by the developed Bee System could be created
for different transportation engineering problems. Preliminary results with the Bee
System that was developed in this paper are very promising. These results indi-
cate that the development of new models based on swarm intelligence principles
could significantly contribute to the solution of complex transportation engineering
problems.
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