
Bee Colony Optimization Overview

Dušan Teodorović 1, Tatjana Davidović
2
 and Milica Šelmić 1

1 University of Belgrade, Faculty of Transport and Traffic Engineering,
Vojvode Stepe 305, 11000 Belgrade, Serbia
{dusan,m.selmic}@sf.bg.ac.rs

2 Mathematical Institute, Serbian Academy of Sciences and Arts,
Kneza Mihaila 36, P.O.Box 367, 11000 Belgrade, Serbia

tanjad@mi.sanu.ac.rs

Abstract. The Bee Colony Optimization (BCO) meta-heuristic belongs to the
class of Nature-Inspired Algorithms. This technique uses an analogy between
the way in which bees in nature search for a food, and the way in which optimi-
zation algorithms search for an optimum in combinatorial optimization prob-
lems. Artificial bees represent agents, which collaboratively solve complex
combinatorial optimization problem. The chapter presents a description of the
algorithm, classification and analysis of the results achieved using Bee Colony
Optimization (BCO) to model complex engineering and management processes.

1 Introduction

The Bee Colony Optimization (BCO) meta-heuristic [29, 30, 31, 32] belongs to the
class of Nature-Inspired Algorithms. These algorithms are inspired by various bio-
logical and natural processes. Natural systems have become important sources of ideas
and models for development of various artificial systems. The popularity of the Na-
ture-Inspired Algorithms is mainly caused by the capability of biological systems to
successfully adjust to continually varying environment. Neural networks, evolutionary
computation, ant colony optimization, particle swarm optimization, artificial immune
systems, and bacteria foraging algorithm are some of the algorithms and concepts that
were inspired by nature.

Individuals in various biological systems are engaged in cooperation, collaboration,
information exchange, and/or conflicts. In many cases, individuals, that are autono-
mous in their decision-making, work together with other individuals in order to
achieve specific objective. Natural phenomena lecture us that simple individual organ-
isms can create systems able to perform highly complex tasks by interacting with each
other.

Few algorithms inspired by bees’ behavior appeared during the last decade (Bee
System, BCO algorithm, ABC algorithm, MBO, Bees Algorithm, HBMO algorithm,
BeeHive, VBA algorithm) [1, 2, 4, 11, 19, 21, 23, 24, 25, 26, 28, 35, 36, 37, 38, 40,
41, 42, 43, 55, 56, 57, 58, 59, 60]. Yonezava and Kikuchi [60] analyzed collective
intelligence based on bees’ behavior. Sato and Hagiwara [43] proposed modified
genetic algorithm named Bee System. In essence, this algorithm belongs to the class of

genetic algorithms. Abbas [1] developed MBO model that is based on the marriage
process in honeybees. BeeHive [55, 56, 57], Artificial Bee Colony (ABC) algorithm
[23, 24, 25] and Bees Algorithm [36, 37, 38] are based on foraging behavior in hon-
eybees but all of them use different concepts for algorithm development. An excellent
survey of the Bees’ behavior inspired algorithms could be found in Baykasoglu et al.
[3].

The BCO meta-heuristic [29, 30, 31, 32] has been proposed quite recently by Lučić
and Teodorović. The BCO is inspired by foraging behavior in honeybees. (Lučić and
Teodorović used the term “Bee System” in their first paper). The basic plan behind
the BCO is to build the multi agent system (colony of artificial bees) able to efficiently
solve hard combinatorial optimization problems. The artificial bee colony behaves
partially similar, and partially in a different way from bee colonies in nature.

The BCO meta-heuristic has been recently used as a toll for solving large and com-
plex real-world problems. It has been shown that the BCO poses an ability to find high
quality solutions of difficult combinatorial problems within a reasonable amount of
computer time. The BCO is a stochastic, random-search technique. This technique
uses an analogy between the way in which bees in nature search for a food, and the
way in which optimization algorithms search for a optimum of (given) combinatorial
optimization problems. The basic idea behind the BCO is to build the multi agent
system (colony of artificial bees) able to effectively solve difficult combinatorial op-
timization problems. Artificial bees investigate through the search space looking for
the feasible solutions. In order to find better and better solutions, autonomous artificial
bees collaborate and exchange information. Using collective knowledge and sharing
information among themselves, artificial bees concentrate on more promising areas,
and slowly abandon solutions from the less promising areas. Step by step, artificial
bees collectively generate and/or improve their solutions. The BCO search is running
in iterations until some predefined stopping criteria is satisfied.

The BCO works in a self-organized and decentralized way and therefore represents
a good basis for parallelization. It also poses an ability to keep away from becoming
trapped in local minima.

This chapter presents a description of the BCO and some of its modifications, as
well as the classification and analysis of the results achieved using BCO to model
complex engineering and management processes. We initially portray the behavior of
bees’ in nature, and then we describe a general Bee Colony Optimization algorithm.
Afterwards, we present some modifications of BCO that allow its application to some
non-standard combinatorial optimization problems. Later on, we describe BCO appli-
cations in different engineering and management problems. The BCO has been suc-
cessfully applied to various engineering and management problems by Teodorović
and coauthors [16, 17, 18, 20, 33, 44, 45, 46, 47, 48, 49, 50, 51]. The BCO has been
applied in the cases of the Traveling Salesman Problem [29, 30, 31], the Ride-
Matching Problem [48, 49], the Routing and Wavelength Assignment (RWA) in All-
Optical Networks [33], the p-median problem [51], static scheduling of independent
tasks on homogeneous multiprocessor systems [17, 18], and traffic sensors locations
problem on highways [20, 44].

2 Biological Background

Swarm behavior (fish schools, flocks of birds, and herds of land animals) is based on
the biological needs of individuals to stay together. When staying together, individu-
als have a higher probability to stay alive, since predator usually attacks only one
individual. Flocks of birds, herds of animals, and fish schools are characterized by
collective movement. Herds of animals react at once to changes in the course and
speed of their neighbors.

Colonies of various social insects (bees, wasps, ants, termites) are also character-
ized by swarm behavior. Swarm behavior is primarily characterized by autonomy,
distributed functioning and self-organizing. The communication systems between
individual insects contribute to the pattern called the ‘‘collective intelligence” of the
social insect colonies. The term ‘‘Swarm Intelligence”, that denotes this ‘‘collective
intelligence”, has been introduced in [5, 6, 7, 8].

Swarm Intelligence [8] is the branch of Artificial Intelligence. Swarm Intelligence
is based on investigation of actions of individuals in different decentralized systems.
These decentralized systems (Multi Agent Systems) are composed of physical indi-
viduals (robots, for example) or “virtual” (artificial) ones that communicate among
themselves, cooperate, collaborate, exchange information and knowledge and perform
some tasks in their environment. When designing Swarm Intelligence models, re-
searchers use some principles of the natural swarm intelligence. The development of
artificial systems usually does not involve the entire imitation of natural systems, but
explores them while searching for ideas and models.

As we already mentioned, the BCO is inspired by foraging behavior of honeybees.
Bees in nature look for a food by exploring the fields in the neighborhood of their
hive. They collect and accumulate food for later use by other bees. Typically, in the
initial step, some scouts search the region. Completing the search, scout bees will
return to the hive and inform their hive-mates about the locations, quantity and quality
of available food sources in the areas they have examined. In case they have discov-
ered nectar in the previously investigated locations, scout bees will dance in the so-
called “dance floor area” of the hive, in an attempt to “advertise” food locations and
encourage the remaining members of the colony to follow their lead. The information
about the food quantity is presented using a ritual called a “waggle dance”. If a bee
decides to leave the hive to collect nectar, it will follow one of the dancing scout bees
to the previously discovered patch of flowers. Upon arrival, the foraging bee takes a
load of nectar and returns to the hive relinquishing the nectar to a food storer bee.
Several scenarios are then possible for a foraging bee: (1) it can abandon the food
location and return to its role of an uncommitted follower; (2) it can continue with the
foraging behavior at the discovered nectar source, without recruiting the rest of the
colony; (3) it can recruit its hive-mates with the dance ritual before the return to the
food location. The bee opts for one of the above alternatives with a certain probabil-
ity. The described process continues repeatedly, while the bees at a hive accumulate
nectar and explore new areas with potential food sources. As several bees may be
attempting to recruit their hive-mates at the dance floor area at the same time, it is
unclear how a bee resting at a hive decides which dancing bee to follow, although it

has been considered that “the recruitment among bees is always a function of the qual-
ity of the food source” [10].

3 Bee Colony Optimization (BCO) Algorithm

The BCO belongs to the class of population-based algorithms. It has been proposed
for the first time in [29, 30, 31] and was evolving through later applications. The early
versions of the algorithm were imitating the behavior of the bees in the nature to a
larger extent. These versions were characterized by the scout bees, an important role
of the hive location, and recruiting process that is more like the natural one than it is
the case in the current version of the algorithm. In this section we describe in details
the current version and we will point out the differences while presenting the concrete
applications.

Population of agents (artificial bees) consisting of B bees collaboratively searches
for the optimal solution. Every artificial bee generates one solution to the problem.
There are two alternating phases (forward pass and backward pass) constituting single
step in the BCO algorithm. In each forward pass, every artificial bee explores the
search space. It applies a predefined number of moves, which construct and/or im-
prove the solution, yielding to a new solution. For example, let bees Bee 1, Bee 2, …,
Bee B participate in the decision-making process on n entities. At each forward pass
bees are supposed to select one entity. The possible situation after third forward pass
is illustrated on Fig.1.

 Bee 1

Bee 2

Bee B

...

 Bee 1

Bee 2

Bee B

...

.

.

.

1

2

3

4

n-1

n

.

.

.

1

2

3

4

n-1

n

.

.

.

1

2

3

4

n-1

n

.

.

.

1

2

3

4

n-1

n

.

.

.

1

2

3

4

n-1

n

. . .

1 2 3 4 n

 Bee 1 Bee 1

Bee 2

Bee B

Fig. 1. An illustration of the third forward pass

Having obtained new partial solutions, the bees go again to the hive and start the
second phase, the so-called backward pass. In the backward pass, all artificial bees
share information about the quality of their solutions. In nature, bees would return to
the hive, perform a dancing ritual, which would inform other bees about the amount of

food they have discovered, and the proximity of the patch to the hive. In the search
algorithm, the bees announce the quality of the solution, i.e. the value of objective
function is computed. Having all solutions evaluated, every bee decides with a certain
probability whether it will stay loyal to its solution or not. The bees with better solu-
tions have more chances to keep and advertise their solutions. On the contrary to the
bees in nature, artificial bees that are loyal to their partial solutions are at the same
time recruiters, i.e. their solutions would be considered by other bees. Once the solu-
tion is abandoned by a bee it becomes uncommitted and has to select one of the adver-
tised solutions. This decision is taken with a probability too, so that better advertised
solutions have bigger opportunity to be chosen for further exploration. In such a way,
within each backward pass all bees are divided into two groups (R recruiters, and
remaining B-R uncommitted bees) as it is shown on Fig. 2. Values for R and B-R are
changing from one backward pass to another one.

Recruiters

1

2

3

4

B-R

5

.

.

.

Uncommitted

1

2

R

3

4

.
.

.

Fig. 2. Recruiting of uncommitted followers

After comparing all generated partial solutions, Bee 2, from the previous example
decided to abandon already generated solution and to join Bee B (see Fig.3).

 Bee 1

Bee 2

Bee B

...

 Bee 1

Bee 2

Bee B

...

.

.

.

1

2

3

4

n-1

n

.

.

.

1

2

3

4

n-1

n

.

.

.

1

2

3

4

n-1

n

.

.

.

1

2

3

4

n-1

n

.

.

.

1

2

3

4

n-1

n

. . .

1 2 3 4 n

 Bee 1 Bee 1

Bee 2

Bee B

 Fig. 3. The possible result of a recruiting process within third backward pass

Bee 2 and Bee B "fly together" along the path already generated by the Bee B. In
practice, this means that partial solution generated by Bee B is associated (copied) to
Bee 2 also. When they reach the end of that common path, they are free to make an
individual decision about the next constructive step to be made. The Bee 1 will keep
already generated partial solution without being chosen by any of the uncommitted
hive-mates, and therefore, it will perform new constructive step independently. The
described situation is illustrated on Fig.4.

 Bee 1

Bee 2

Bee B

...

 Bee 1

Bee 2

Bee B

...

.

.

.

1

2

3

4

n-1

n

.

.

.

1

2

3

4

n-1

n

.

.

.

1

2

3

4

n-1

n

.

.

.

1

2

3

4

n-1

n

.

.

.

1

2

3

4

n-1

n

. . .

1 2 3 4 n

 Bee 1 Bee 1

Bee 2

Bee B

 Fig. 4. An example of partial solutions after fourth forward

The two phases of the search algorithm, forward and backward pass, are alternating

in order to generate all required feasible solutions (one for each bee). When all solu-
tions are completed the best one is determined, it is used to update global best solution
and an iteration of the BCO is accomplished. At this point all B solutions are deleted,
and the new iteration could start. The BCO runs iteration by iteration until a stopping
condition is met. The possible stopping conditions could be, for example, the maxi-
mum total number of forward/backward passes, the maximum total number of for-
ward/backward passes without the improvement of the objective function, maximum
allowed CPU time, etc. At the end, the best found solution (the so called global best)
is reported as the final one.

The algorithm parameters whose values need to be set prior the algorithm execu-
tion are as follows:

B - The number of bees in the hive;
NC - The number of constructive moves during one forward pass.

At the beginning of the search, all the bees are in the hive. According to the main

idea in the current version of the BCO algorithm, the hive is an artificial object, with-
out precise location and does not influence the algorithm execution. It is used only to
denote the synchronization points at which bees are exchanging information about the

current state of the search. The pseudocode of the BCO algorithm could be described
in the following way:

1. Initialization: an empty solution is assigned to every bee;

2. For every bee: // the forward pass

i. Set k = 1; //counter for constructive moves in the forward pass;

ii. Evaluate all possible constructive moves;

iii. According to evaluation, choose one move using the roulette wheel;

iv. k = k + 1; If k ≤ NC Goto step ii.

3. All bees are back to the hive; // backward pass starts;

4. Evaluate (partial) objective function value for each bee;

5. Every bee decides randomly whether to continue its own exploration and be-
come a recruiter, or to become a follower;

6. For every follower, choose a new solution from recruiters by the roulette

 wheel;

7. If solutions are not completed Goto step 2;

8. Evaluate all solutions and find the best one;

9. If the stopping condition is not met Goto step 2;

10. Output the best solution found.

3.1 Constructive and Improving Alternatives of the BCO Algorithms

Until now, the BCO algorithms in the literature have been constructive. The BCO
starts from scratch and, for each bee, constructs a solution step by step applying some
stochastic problem specific heuristics. Randomness induced by these stochastic con-
struction processes assures diversity of the search. Within each iteration B solutions
are generated and the best of them is used for updating the current global best solu-
tion. Next iteration then results in B new solutions among which we search for the new
global best one.

The BCO could also work as an improving algorithm. In this case, the analyst
would start from a complete solution. The complete solution could be generated ran-
domly or by some heuristics. By perturbing that solution, artificial bees would try to
improve it. Todorović et al. in [53] developed a bee colony approach for the nurse
rostering problem. Their approach is the first one that allows both constructive and
improving steps to be applied and combined together. The developed algorithm was
designed to be a combination of constructive and local search phases. In the construc-
tive phase, unscheduled shifts are assigned to available nurses. A local search move
could be applied to both partial and complete rosters. Its role was to modify a roster
either by swapping assignments of nurses, or by reassigning a shift to another nurse.

The proposed approach also incorporated a novel intelligent discarding of portions of
large neighborhoods for which it is predicted that they will not lead to the improve-
ment of the objective function. The performance of the algorithm was evaluated on
real world data from hospitals in Belgium.

The idea of improving alternatives could be developed in many different ways, and
this approach certainly may be very useful for solving difficult combinatorial optimi-
zation problems.

3.2 The Artificial Bees and Fuzzy Logic

In most of the models it is assumed that problem data (costs, capacity, distance, dura-
tion etc.) are deterministic quantities known in advance. On the other hand, the travel
time between two nodes in a network, for example, involves an uncertainty due to
traffic conditions, type of driving, weather conditions, choice of streets, and so on.
Our subjective feeling regarding travel time is often not very precise. For example, the
estimate is made that it takes “approximately 30 minutes” to go from one node to
another. No one will claim that it takes 27 minutes when subjectively estimating travel
time. Estimating travel time in this way is not the result of objective measurements but
is a subjective estimation that differs among drivers. Travel time has often been
treated as a random variable, and this treatment required travel time measurements
and the establishment of a certain probability density function. However, dispatchers-
decision makers most often make a subjective estimate of travel time based on their
experience and intuition, expressing the estimated travel time as “short,” “long,”
“about 20 minutes,” and so on. Travel time between two nodes in a network can be
treated as fuzzy number. (Most sets in reality have no sharp line between the elements
in the set and those outside the set. The simplest examples of fuzzy sets are classes of
elements characterized by adjectives: big, small, fast, old, etc. With fuzzy sets the
membership function is associated and it takes continuous values from the closed
interval [0,l]. Fuzzy set A is defined as a set of ordered pairs A = { })(, xµx A where

)(xµA indicates the grade of membership of element x in set A [61]. For example, if x

is the travel time between two nodes, then short could be considered as a particular
value of the fuzzy variable travel time. To each x a number []1,0∈)(xµA is assigned.

This number shows the extent to which x is considered to be short.).
The fuzzy set of subjectively estimated travel time between nodes i and j is de-

noted by T. In order to simplify the arithmetic operations, the travel time T is assumed
to be a triangular fuzzy number. Triangular fuzzy number T is expressed as:

()321 ,,= tttT (1)

where t1, t2, and t3 are the lower boundary, the value that corresponds to the highest
grade of membership, and the upper boundary of fuzzy number T, respectively [27].

The BCO application on models with fuzzy logic is almost the same as application
on deterministic models. Main differences are in the part when:

- bees’ partial solutions are compared;
- different component attractiveness is calculated.

In the first case, Kaufmann and Gupta's method [27] can be used to compare fuzzy
numbers. In the second case, the approximate reasoning algorithm for calculating the
solution component attractiveness could be applied. This algorithm is usually com-
posed from the rules of the following type (Fig. 5):

If the attributes of the solution component are VERY GOOD
Then the considered solution component is VERY ATTRACTIVE

1

time

less attractive attractive very attrative

Fig. 5. Fuzzy sets describing attractiveness

The approximate reasoning based on Fuzzy Logic has been used in [32] to model
uncertain demands in nodes when solving vehicle routing problem and in [48, 49] to
model some uncertain quantities for solving Ride-Matching problem.

3.3 Parallelization of Bee Colony Optimization

The BCO algorithm created as a multi agent system provides a good basis for the
parallelization on different levels. It seems to have significant amount of inherent
parallelism. Therefore, studying the potential strategies for its parallelization, repre-
sent fruitful research field. As of the authors’ knowledge, the only paper proposing
strategies for parallelization of the BCO is [16]. In this subsection we will describe
those and discuss some other potential parallelization strategies of BCO. First we give
short description of specific points in parallelization of meta-heuristics (stochastic
search algorithms for combinatorial optimization), an overview of parallel meta-
heuristic classification and taxonomy, and then we describe parallelization of BCO
based on the synchronous strategy.

The main goal of parallelization of any algorithm is to speedup the computations
needed to solve a particular problem by engaging several processors and divide the
total amount of work between them. For stochastic algorithms this goal may be de-
fined in one of the following two ways: 1) accelerate the search for the same quality
solution or 2) improve the solution quality by allowing more processors to run the
same amount of (CPU or wall-clock) time as the single one does. When meta-
heuristics are in consideration, the combination of gains may be obtained: parallel
execution can enable efficient search of different regions of the solution space yield-
ing to the improvement of the final solution quality within smaller amount of execu-
tion time.

A significant amount of work has already been done on parallelization of meta-
heuristics. The approach can be twofold. The theoretical aspects of parallelization
could be considered, and practical applications of parallel meta-heuristics to different
optimization problems proposed. Different parallelization strategies had been pro-
posed in the recent literature dealing with various meta-heuristic methods [13, 22, 39].
The survey papers [12, 54] summarize these works and propose adequate taxonomy.

One of the first classifications of parallelization strategies was proposed in [54]. It
is based on the control of the search process and results in two main groups of paral-
lelization strategies: single walk and multiple walks parallelism. Single walk paralleli-
zation assumes that the unique search trajectory is generated and only required com-
putations are performed in parallel. It is connected to the fine granularity of tasks to be
executed in parallel and usually, it is devoted to speedup the execution without affect-
ing the final solution quality.

Multiple walks parallelization strategy involves different search trajectories ex-
plored by different processors. It assumes medium to coarse granulation of tasks and
they could be executed independently or in cooperation. The simplest example of
multiple walks parallel search is independent run. It is the parallel simulation of the
multistart execution and it does not involve information exchange during the search.
Cooperative execution assumes data exchange during the search which affects the
search trajectory on each processor.

To refine the classification of parallelization strategies, one has to consider com-
munication aspects (synchronous or asynchronous) and search parameters (same or
different initial point and/or same or different search strategies). The resulting classifi-
cation is described in details in [12].

As we already mentioned, the BCO algorithm created as a multi agent system,
provides a good basis for the parallelization on different levels. High level paralleliza-
tion assumes coarse granulation of tasks and can be applied to iterations of BCO.
Smaller parts of BCO algorithms (forward and backward passes within a single itera-
tion) also contain a lot of independent executions and are suitable for low level paral-
lelization. In [16] the authors considered both strategies in a synchronous way.

High level parallelization in its simplest form represents the independent execution
of BCO on different processors. It could be obtained by the division of stopping crite-
ria among processors. For example, if the stopping criteria is allowed CPU time (giv-
en as a runtime value in seconds), the BCO could run in parallel on q processors for
runtime/q seconds. Similar rule can be introduced in the case when stopping criteria is
allowed number of iterations. In both cases each processor performs independently
sequential variant of BCO, but with reduced value of the stopping criteria. This
variant of parallelized BCO was named distributed BCO (DBCO). Other way to im-
plement coarse grained parallelization strategy could be the following: Instead of the
stopping criterion the number of bees could be divided. Namely, if sequential execu-
tion uses B bees for the search, parallel variant executing on q processors would be
using B/q bees only. This way results in sequential BCO on each processor, but with
reduced number of bees. This variant is also distributed BCO, but was referred to as
BBCO since the bees were distributed among processors.

Independent runs on different processors allow also changes of search parameters
and therefore, this parallelization strategy belongs to the multiple walks group. Name-

Namely, once the stopping criteria is reduced, different values could also be assigned
to the number of bees B and/or to the number NC of constructive moves within a sin-
gle forward pass for each BCO executing on different processors. Similarly, for
BBCO the number of bees does not have to be equally distributed among processors:
the variant in which for each processor different number of bees (between 1 and B) is
assigned with the same value for NC would provide different searches on different
processors and therefore would represent the multiple walks parallelization strategy.

The implementation of low level parallelization strategy in [16] was named FBCO
and it was based on the following facts. Each artificial bee acts as an individual agent
during the forward pass when partial solutions are generated. The generation of partial
solution is independent from the rest of the computations. This enables the fine level
parallelization (the one from single walk group). Within the concrete implementation,
in [16] the following scenario appeared: forward pass is executed independently on
different processors while backward pass requires tight coordination between proces-
sors. For the corresponding computations within backward pass it is necessary to have
the information about all generated partial solutions. Nevertheless, those computations
could be done either sequentially by a single processor (master), or spread among all
processors and accompanied by required communication. This communication is
known to be the main bottleneck of parallel execution if distributed memory multi-
processor system is used. In that case, it is important to reduce both the amount of data
and the number of transfers (messages).

The implementation of FBCO required the authors to define the relation between
the number of processors q and the number of bees B. Namely, each processor was
responsible for B/q bees, and therefore, these two numbers should be divisible.

There are some other possible parallelization strategies that could be applied to
BCO and that belong to the classification proposed in [12]. For example, the bees
could be allowed to perform several forward-backward passes before initiating com-
munication between processors. During that period, loyalty could be determined only
with respect to the bees from the same processor. Once communication is initiated,
bees from different processors should have higher probability to be chosen by an un-
committed follower. The other way could be to develop an architecture dependent
parallelization strategy. For example, within a ring topology, a processor communi-
cates only with its neighbors. Therefore, the partial solutions are sent only to the next
processor, and received only from the previous one in the ring. Again, the decisions
about the loyalty would be made based on incomplete information. The above men-
tioned parallelization strategies already introduce asynchronous concepts in BCO, but
it could be even more developed within potential future research.

The well known performance measures for parallel programs are speed-up Sq and
efficiency Eq [9, 42]. They are defined as follows:

q

best
seqq

q
q

best
seq

q qT

T

q

S
E

T

T
S ==,=

 (2)

Here, best
seqT denotes the execution time of best known sequential algorithm on a

single processor, while Tq represents the execution time of the parallel algorithm on q
processors.

When meta-heuristics are under consideration, the performance of parallelization
strategy is influenced also by the quality of final solution. Namely, meta-heuristics
represent stochastic search procedures (and BCO is not an exception) which may not
result with a same solution even in repeated sequential executions. On the other hand,
parallelization may assure the extension of the search space which could yield to both
improvement or degradation of the final solution quality. Therefore, the quality of
final solution should also be considered as a parameter of parallelization strategy
performance.

4 BCO Applications

4.1 Solving the Traveling Salesman Problem by BCO

Lučić and Teodorović [29, 30, 31] tested the Bee Colony Optimization approach in
the case of Traveling Salesman Problem (TSP). The well known Traveling Salesmen
Problem is defined in the following way: Given n nodes, find the shortest itinerary that
starts in a specific node, goes through all other nodes exactly once and finishes in the
starting node.

When solving the TSP problem the authors were also developing the BCO algo-
rithm and it had more similarities with the behavior of bees in the nature, than the
recent version of algorithm. The main difference between these two versions is in the
fact that hive had an important role in the previous one. The hive had specified loca-
tion that could also be changed during the search process. The other difference is that
not all the bees are engaged at the beginning of the search process. The scout bees
start the search, and at each stage new bees join it by recruiting process.

In [29, 30, 31] the authors locate hive at random node and decompose the TSP
problem into stages. At each stage (corresponding to the forward pass of BCO), a bee
chooses the new nodes to be added to the partial Traveling Salesman tour created so
far. This selection was performed in random manner with certain probabilities. Lučić
and Teodorović [29, 30, 31] proposed Logit-based model for calculating the probabil-
ity of choosing next node to be visited. Logit model is one of the most successful and
widely accepted discrete choice model [34]. When calculating this probability, the
proposed model took into account the distance between current node (and/or hive) and
node-candidate to be visited, the total number of performed iterations in a search
process, as well as the total number of bees that visited considered link in the past.
The proposed model was represented by the complex and complicated formulae, and
was not used in subsequent research by other researchers.

During the backward pass each bee decided whether to abandon the generated par-
tial solution (i.e. return to its role of an uncommitted follower) or keep it (i.e. dance to

recruit the hive-mates that would follow it at the beginning of the next forward pass).
There existed certain probabilities for these two choices, where bees with higher ob-
jective function value had greater chance to continue their own exploration. Each
follower bee had chosen a new solution from one of the recruiters by the roulette
wheel, where better solutions had higher probability of being chosen for exploration.
After the selection had been made, bees expanded previously generated partial solu-
tions by a predefined number of nodes during the next forward pass, followed by the
second backward pass and return to the hive. Once in the hive, bees took part in a
decision making process again, thus repeating the described process. These steps were
repeated until complete solutions have been generated (for each bee the whole TSP
tour was discovered). The authors tried to improve the solutions obtained by the bees
in current iteration by applying different tour improvement algorithms based on k-opt
procedure. Among all generated solutions, the best one was determined and used to
update the global best. This represented the end of single iteration and the next one
started after the hive relocation.

The authors explored the effectiveness of the BCO on a large number of numerical
examples. Here we present the results for benchmark problems that were taken from
the following Internet address:

http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/tsp/.
All tests were run on an IBM compatible PC with PIII processor (533MHz). The

obtained results are given in Table 1.

Table 1. TSP benchmark problems: The results obtained by the BCO algorithm

Problem
name

No. of
nodes

Optimal
value

BCO
Relative
error (%)

CPU (sec)

Eil51 51 428.87 428.87 0.00 29
Berlin52 52 7544.37 7544.37 0.00 0
St70 70 677.11 677.11 0.00 7
Pr76 76 108159.00 108159.00 0.00 2
Kroa100 100 21285.40 21285.40 0.00 10
Eil101 101 640.21 640.21 0.00 61
Tsp225 225 3859.00 3899.90 1.06 11651
A280 280 2586.77 2608.33 0.83 6270
Pcb442 442 50783.55 51366.04 1.15 4384
Pr1002 1002 259066.60 267340.70 3.19 28101

Results given in the Table 1 show that the BCO proposed in [29, 30, 31] produced
results of a very high quality. The BCO was capable to get the objective function
values equal or very close to the optimal ones. The CPU times necessary to discover
the best solutions by the BCO were very low (in 2001). In other words, the BCO was
able to produce “very good” solutions in a “reasonable amount” of computer time.

4.2 Solving the Ride-Matching Problem by BCO

In a lot of countries urban road networks are highly congested. The negative conse-
quences of traffic congestion are enlarged travel times, bigger number of stops, unan-
ticipated delays, greater travel cost, inconvenience to drivers and passengers, in-
creased air pollution, noise level and number of traffic accidents. Growing traffic
network capacities by building more roads is extremely costly as well as environmen-
tally devastating. Efficient usage of the existing supply is essential in order to sustain
the growing travel demand. Researchers, planners, and transportation professionals
have developed various Travel Demand Management (TDM) techniques. One of the
widely used Travel Demand Management (TDM) techniques is ridesharing. Within
this concept, two or more persons share vehicle when traveling from their origins to
the destinations. The operator of the system must posses the following information
regarding trips planned for the next week: (a) Vehicle capacity (2, 3, or 4 persons); (b)
Days in the week when person is ready to participate in ride-sharing; (c) Trip origin
for every day in a week; (d) Trip destination for every day in a week; (e) Desired
departure and/or arrival time for every day in a week.

The ride-matching problem considered by Teodorović and Dell’Orco in [48, 49]
could be defined in the following way: Make routing and scheduling of the vehicles
and passengers for the whole week in such a way to minimize the total distance trav-
eled by all participants. In [48, 49] the authors developed BCO based model for the
ride-matching problem. They started their choice model from the assumption that the
quantities perceived by bees are ‘fuzzy’. They created artificial bees that use approxi-
mate reasoning and rules of fuzzy logic in their communication and acting. The main
advantage of using the approximate reasoning algorithm for calculating the solution
component attractiveness was that it made possible to calculate solution component
attractiveness even if some of the input data were only approximately known. If fi
denotes the attractiveness value of solution component i, the probability pi for solution
component i to be added to the partial solution was equal to the ratio of fi and the sum
of all considered solution component attractiveness values:

∑
=

j
j

i
i

f

f
p

(3)

In order to choose the next solution component to be added to the partial solution,
artificial bees use a proportional selection known as ‘roulette wheel selection.’ (The
sections of roulette are in proportion to probabilities pi). In addition to the ‘roulette
wheel selection,’ several other ways of selection could be used. When adding the
solution component to the current partial solution during the forward pass, a specific
bee perceives a specific solution component as ‘less attractive’, ‘attractive’, or ‘very
attractive’. Artificial bee can perceive a specific attribute as ‘short’, ‘medium’ or
‘long’; ‘cheap’, ‘medium’, or ‘expensive’; etc. The authors developed the approximate
reasoning algorithm for calculating the solution component attractiveness.

In order to describe bee’s partial solutions comparison mechanism, the authors in-
troduced the concept of partial solution badness. The partial solution badness was
calculated in the following way:

minmax

min
)(

-

-
=

LL

LL
L

k

k
(4)

where
Lk – represents the badness of the partial solution discovered by the kth bee;
L(k) – is the objective function values of the partial solution discovered by the kth bee;
Lmin and Lmax denote the objective function value of the best and worst partial solution
discovered from the beginning of the search process.

The approximate reasoning algorithm to determine bee’s loyalty to its partial solu-
tion contained the rules of the following type:

If the discovered partial solution is BAD
Then loyalty is LOW

Bees use approximate reasoning, and compare their discovered partial solutions

with the best, and the worst discovered partial solution from the beginning of the
search process. In this way, ‘historical facts’ discovered by the all members of the bee
colony have significant influence on the future search directions.

Based on the quality of its solution each bee decided with certain probability
weather to stay loyal or became an uncommitted follower. Every partial solution (par-
tial path) that was being advertised in the dance area had two main attributes: (a) the
objective function value; and (b) the number of bees that were advertising the partial
solution (partial path). The number of bees advertising the partial solution was a good
indicator of a bees’ collective knowledge. It showed how a bee colony perceives spe-
cific partial solutions. The authors used the approximate reasoning algorithm to de-
termine the advertised partial solution attractiveness. It consisted of the rules of the
following type:

If the length of the advertised path is SHORT
 and the number of bees advertising the path is SMALL
Then the advertised partial solution attractiveness is MEDIUM

The approximate reasoning algorithm was used to calculate the number of shifting

bees with the rules of the following type:

If bees’ loyalty to path pi is LOW
 and path pj ‘s attractiveness is HIGH
Then the number of shifting bees from path pi to path pj is HIGH

In this way, the number of bees flying along a specific path is changed before be-
ginning of the new forward pass. Using collective knowledge and sharing information
among themselves, bees concentrate on more promising search paths, and slowly
abandon less promising paths.

Proposed model was tested in the case of ride-sharing demand from Trani, a small
city in the south-east of Italy, to Bari, the regional capital of Puglia. The authors col-

lected data regarding 97 travelers demanding ride sharing, and assumed, for sake of
simplicity, that capacity is four passengers for all their cars. Fig.6 shows changes in
the best-discovered objective function values through the iterations.

Fig. 6. Changes in the best-discovered objective function values through the iterations

4.3 Routing and Wavelength Assignment in All-Optical Networks Based by BCO

The Routing and Wavelength Assignment (RWA) in All-Optical Networks is the well
known optimization problem in telecommunication. Every pair of nodes in optical
networks is characterized by a number of requested connections. The total number of
established connections in the network depends on the routing and wavelength as-
signment procedure. The RWA problem could be described in the following way:
Assign a path through the network and a wavelength on that path for each considered
connection between a pair of nodes in such a way to maximize the total number of
established connections in the network.

Marković and his coauthors in [33] had successfully solved this problem by the
BCO meta-heuristic. They proposed the BCO heuristic algorithm tailored for the
RWA problem. They called the proposed algorithm the BCO-RWA algorithm. The
authors created the artificial network shown in the Fig.7.

The node depicted by the square in the Fig.7 represents hive. At the beginning of
the search process all artificial agents are located in the hive. Bees depart from the
hive and fly through the artificial network from the left to the right. Bee’s trip is di-
vided into stages. Bee chooses to visit one artificial node at every stage. Each stage
represents the collection of all considered origin-destination pairs. Each artificial node
is comprised of an origin and destination linked by a number of routes. Lightpath is a
route chosen by bee agent. Bee agent’s entire flight is collection of established light-
paths. The authors determined in advance the number of bees B and the number of
iterations I as a stopping criteria.

During forward pass every bee visits n stages (bee tries to establish n new light-
paths). That means NC was set to n where n was selected in such a way that n<<m, m
representing the total number of requested lightpaths. At every stage a bee chooses
among remaining artificial nodes (not previously selected ones). Sequence of the n

visited artificial nodes generated by the bee represents one partial solution of the prob-
lem considered. Bee is not always successful in establishing lightpath when visiting
artificial node. Bee’s success depends on the wavelengths’ availability on the specific
links. In this way, generated partial solutions differ among themselves according to the
total number of established lightpaths.

D1S1

Artificial node 1

DnSn

Artificial node m

S2

Artificial node 2

D2

D1S1

Artificial node 1

DnSn

Artificial node m

S2 D2

D1S1

Artificial node 1

DnSn

Artificial node m

S2 D2

Stage1 Stage 2 Stage m

Hive

Artificial node 2 Artificial node 2

B1

B2

BB

m-total number of requested lightpaths

Fig. 7. Artificial network

Probability p that specific unvisited artificial node will be chosen by the bee equals
1/nunvis, where nunvis is the total number of unvisited artificial nodes. By visiting spe-
cific artificial node in the network shown in Fig.7 bees attempt to establish the re-
quested lightpath between one real source-destination node pair in optical network.
Let us assume that the specific bee decided to consider the lightpath request between
the source node s and the destination node d. In the next step, it is necessary to choose
the route and to assign an available wavelength along the route between these two real
nodes. In [33] for every node pair (s, d), the authors defined a subset Rsd of allowed
routes that could be used when establishing the lightpath. These subsets were defined
by using the k shortest path algorithm: For every of the k alternative routes the bee’s
utility when choosing the considered route is calculated. The shorter the chosen route
and the higher the number of available wavelengths along the route, the higher the
bee’s utilities are. The authors define the bee’s utilities sd

rV when choosing the route r

between the node pair (s, d) in the following way:

maxmin

,)-1(+
1+-

1
=

W

W
a

hh
aV r

rr

ds
r

(5)

where:

r – the route ordinary number for a node pair, r =1, 2,..., k, { }sdr R∈ ;

hr – the route length expressed in the number of physical hops;
hrmin – the length of the shortest route rmin ;
Wr – the number of available wavelengths along the route r;

{ }max max
sd r

r R
W W

∈
= – the maximum number of available wavelengths among all

routes sdr R∈ ;
a – weight (importance of the criteria), 0 1a≤ ≤ .

Bees decide to choose a physical route in optical network in a random manner. In-

spired by the Logit model, the authors in [33] assumed that the probability psd
r of

choosing route r in the case of origin-destination pair (s, d) equals:

=∈∀

>∈∀

∑=
=

00

0

1

WandRr

WandRr
R

eV

eV

p

r
sd

r
sd

i

sd
r

sd

sd
i

sd
r

(6)

where R
sd is the total number of available routes between pair of nodes (s, d). The

route r is available if there is at least one available wavelength on all links that belong
to the route r.

After forward pass, bees perform backward pass, i.e. they return to the hive. In the
hive every bee makes the decision about abandoning the created partial solution or
expanding it in the next forward pass. The authors assumed that every bee can obtain
the information about partial solution quality created by every other bee. The prob-
ability that the bee b would use the same partial tour that is defined in forward pass u,
at the beginning of the u + 1 forward pass is calculated in the following way:

ep u

CbC

b

-max-=
(7)

where:
Cb - the total number of established lightpaths from the beginning of the search

process by the b-th bee;
Cmax - the maximal number of established lightpaths from the beginning of the

search process by any bee;
u - ordinary number of forward pass, u = 1,2,...
Let us discuss Eq. (7) that the authors propose in more details. Better generated

partial solution (higher Cb value), implies the higher probability that the bee will be
loyal to the previously discovered partial solution. Greater the ordinary number of the
forward pass implies higher influence of the already discovered partial solution. This
is expressed by the term u in the nominator of the exponent (Eq. (7)). In other words,
at the beginning of the search process bees are “more brave” to search the solution
space. The more forward passes they make, the bees have less courage to explore the

solution space. The more we are approaching the end of the search process, the more
focused the bees are on the already known solutions.

In [33] the probability pP that the P-th advertised partial solution will be chosen by
any of the uncommitted follower was calculated using the following relation:

∑
=

1=

P

p

C p

CP

P
e

e
p

(8)

where CP is the total number of the established lightpaths in the case of the P-th ad-
vertised partial solution.

The BCO-RWA algorithm was tested on a few numerical examples. The authors
formulated corresponding Integer Linear Program (ILP) to determine optimal solu-
tions for the considered examples. They compared the BCO-RWA results with the
optimal solution. The comparison for the considered network is shown in the Table 2.

Table 2. The results obtained by comparison of BCO-RWA with ILP

Number of
established lightpaths

CPU time [s]
Total number
of requested
light-paths

Number of
wave-
lengths ILP BCO-RWA ILP BCO-RWA

Relative
error
[%]

28

1
2
3
4

14
23
27
28

14
23
27
28

 4
 94
 251
 313

4.33
4.58
4.68
4.66

0
0
0
0

31

1
 2

3
4

15
25
30
31

14
25
30
31

 4
 83
 235
1410

4.73
5.00
5.19
5.21

6.67
0
0
0

34

1
2
3
4

15
27
33
34

14
26
33
34

 14
 148
 216
 906

5.19
5.50
5.64
5.64

6.67
3.70
0
0

36

1
2
3
4

16
27
34
36

15
26
34
36

 23
 325
 788
1484

5.64
6.09
6.11
6.13

6.25
3.70
0
0

38

1
2
3
4

17
28
35
38

16
27
35
38

 16
 247
 261
1773

5.67
6.09
6.23
6.33

5.88
3.57
0
0

40

1
2
3
4

17
28
35
40

16
27
35
40

 31
 491
 429
1346

6.00
6.28
6.61
6.67

5.88
3.57
0
0

From the results presented in Table 2 it can be concluded that the proposed BCO-
RWA algorithm has been able to produce optimal, or a near-optimal solutions in a
reasonable amount of computer time.

4.4 BCO approach to optimize locations of traffic sensors on highways

The problem of the placement of point detectors within a roadway network belongs
to the field of location theory. Point detectors are deployed on roadways to collect
traffic data including volume, occupancy, and speed. The data is used by Traffic Man-
agement Centers in cities to manage traffic and incidents and provide information to
motorists about current conditions. The spacing of detectors on freeways has a key
impact on the travel time estimates obtained from the reported speeds. There is a tra-
deoff between detector spacing and travel time estimate correctness. As detectors
become more closely spaced, the data obtained from them more closely look like
continuous data available from probes. This additional accuracy also comes with
much higher capital and ongoing costs, as all detectors require regular maintenance to
continue to report good data. Transportation agencies are therefore seeking a method
to indicate the most appropriate locations for detector deployment such that the travel
time estimate error is minimized, within the constraints of available capital and main-
tenance funding.

Edara et al. in [20, 44] studied the problem of optimal placing traffic detectors on
freeways and developed the BCO algorithm to solve it. The proposed model tries to
minimize the error in travel time estimation, while taking into account the constraints
of available capital and maintenance funding.

During the forward pass of the BCO algorithm the Logit model [34] was used
for selection of the potential detector locations (NC was equal to one). The probability
of a bee choosing a node i was expressed using the Logit model as follows:

∑
=

1=

n

r

rU

iU

i

e

e
p

 (9)

where Ui represented the utility of having a detector at node i. This utility depended
on several factors that may affect travel time estimates. Factors such as the presence of
a natural bottleneck at that location (e.g. a lane reduction) that leads to recurring
congestion during the peak traffic periods, historical accident likelihoods (to monitor
the induced delays by deploying detectors), level of traffic volumes, etc, can be used
to determine the utilities. In [20, 44], it was assumed that all potential detector
locations have equal utilities. Within each forward pass a bee visited a certain number
of nodes and created a partial solution (choose few nodes that become detector loca-
tions).

Each generated partial solution in [20, 44] was characterized by the travel time
estimation error. As the criteria for comparison of partial solutions, the maximum
travel time error over all travel time runs was selected. By Eb the authors denoted the

maximum travel time error over all travel time runs in the case of the partial solution
created by the b-th bee. It was normalized by the following formula:

[] BbO
EE

EE
O b

b
b ,...,2,1=1,0∈,

-

-
=

minmax

max
 (10)

having that:

bO - was normalized value of the maximum travel time error over all travel time runs

for the partial solution created by the b-th bee

maxE , minE - represented maximum and minimum travel time error value over all

partial solutions generated so far.
The probability that b-th bee (at the beginning of the new forward pass) is loyal to

its previously discovered partial solution was expressed as follows:

Bbep u
bOO

u
b ,...2,1==

-max-1+
 (11)

where u represented the ordinary number of the forward pass (e.g., u=1 for first for-
ward pass, u=2 for second forward pass).

A bee that does not want to expand its previously generated partial solution would
go to the dancing area of the hive to find another bee(s) to follow. The probability that
b’s partial solution would be chosen by any uncommitted bee in [20, 44] was equal to:

∑
=

1=

R

k
k

b
b

O

O
p

 (12)

where:
Ok - objective function value of the k-th advertised solution;

R - the number of recruiters.
The proposed BCO algorithm was tested on a real-world freeway segment in Vir-

ginia. One of the main purposes of developing proposed methodology was to generate
tradeoff plots between the travel time error and the number of detectors which would
give the optimal placement of detectors for different levels of available funding.

Tradeoff plots were generated by varying the actual number of detectors (d) from 2
to 20 in increments of 1. Results of the BCO runs from [44] are shown in Fig.8. For a
given number of detectors, the obtained optimal placement would result in a travel
time estimation error for each travel time run. The maximum error versus the detector
deployment obtained by the Genetic algorithms (GA) is also plotted in Fig.8.

These results enablled savings of 30% as compared to the current deployment at 20
locations. The obtained results were very competitive when compared with the results
of Genetic Algorithms achieved in previous study.

The developed method is intended for use at a planning level, to assist in determin-
ing where to deploy detectors in an area that currently has few or no detectors, or in
determining which detectors need to be (or those that need not be) regularly main-
tained to obtain good travel time estimates in areas with dense detector deployment.

0

1.7

3.3

5

6.7

8.3

10

2 4 6 8 10 12 14 16 18 20

GA Solutions

BCO Solutions

Number of Detector Deployed

M
a

xi
m

um
 T

T
 E

st
im

at
io

n
E

rr
or

 (
M

in
ut

e
s)

Fig. 8. Maximum Travel Time Estimation Error Plot (BCO vs GA)

4.5 Scheduling Independent Tasks by BCO and Parallel BCO

Davidović et al. [17, 18] applied BCO to the problem of static scheduling of inde-
pendent tasks on identical machines. The problem can be described as follows. Let

{ }nT ,...,2,1= be a given set of independent tasks, and { }mP ,...2,1= set of identical
machines. The processing time of task i (i = 1,2,…,n) is denoted by l i. All tasks are
mutually independent and each task can be scheduled to any machine. All given tasks
should be executed. Task should be scheduled to exactly one machine and machines
can execute one task at a time. The goal is to find scheduling of tasks to machines in
such a way as to minimize the completion time of all tasks (the so called makespan).

At each iteration of its execution BCO performs constructive steps composed of
forward and backward passes and within them generates B solutions (schedules), one
schedule for each bee. Within each forward pass every artificial bee is allowed to fly
out from the hive and to generate NC task-machine pairs. The probability that specific
bee chooses task I, denoted by pi was calculated as follows:

∑
=

1=

K

k
k

i
i

l

l
p , i= 1,2,…,n

(13)

where:

l i – is the processing time of the i-th task;

K – represents the number of “free” tasks (not previously chosen).
Obviously, tasks with longer processing times have higher chances to be chosen.

The probability pj of choosing machine j by any bee equals:

∑
=

1=

m

k
k

j
j

V

V
p , j= 1,2,…,m

 (14)

where:

FF

FF
V

j
j min-max

-max
= , j= 1,2,…,m

 (15)

Fj - running time of machine j based on tasks already scheduled to it;
max F, min F - maximum and minimum over all machines running times.
Machines with a lower value of the running times have a higher chance to be

chosen. In total, B bees choose B*NC task-machine pairs within each forward pass.
After scheduling tasks to machines the corresponding machines’ running times were
updated.

After the completion of forward pass, all bees return to the hive and backward pass
starts. Bees exchange information about the quality of the partial solutions generated.
The latest time point of finishing the last task at any machine characterizes each gen-
erated partial solution. Upon obtaining full information about all partial solutions
generated by all bees, every bee decides whether to abandon the food source and be-
come again uncommitted follower, or dance and thus recruit the hive-mates before
flying again from the hive and thus beginning the new forward pass. Forward and
backward passes alternate until all bees generate the whole schedules.

If Cb (b=1, 2,..., B) denotes the latest time point of finishing the last task at any
machine in the partial solution generated by the b-th bee, then Ob, the normalized val-
ue of the time point Cb, was calculated in [17, 18] in the following way:

Bb
CC

CC
O b

b ,...,2,1,
minmax

max =
−
−

=
 (16)

where Cmin and Cmax are respectively the smallest and the largest time point among all
time points produced by all bees. The probability that b-th bee (at the beginning of the
new forward pass) is loyal to the previously discovered partial solution is calculated in
this paper in the following way:

Bbep u
bOO

u
b ,...2,1==

-max-1+
 (17)

where u is the ordinary number of the forward pass.
Ones the bee decided to stay loyal to its own partial solution, it is automatically be-

coming a recruiter, i.e. its solution is considered to be selected by any uncommitted
bee (Fig. 9). The authors have assumed in [17, 18] that the probability the recruiter b’s
partial solution will be chosen by any uncommitted bee equals:

∑
=

1=

R

k
k

b
b

O

O
p

 (18)

where:
Ok - objective function value of the k-th advertised solution;

R - the number of recruiters.

1 81

2

3

4

5

7 92 3 4

1 2 3 41 2 3 4
Machines

1 2 3 4

61

2

3

4

5

1

2

3

4

5
time
axis

time
axis

time
axis

 Bee 1

Bee 2

Bee B

5

. . .

. . .

. . .

LOYAL UNCOMMITTED LOYAL

. . .

...

O1 O2 OB

p1 & RND p2 & RND pB & RND

Machines Machines

Fig. 9. Comparison of partial solutions after third forward pass, NC=1.

Using Eq. (18) and a random number generator, every uncommitted follower join
one bee dancer (recruiter). Recruiters fly together with a recruted hive-mates in the
next forward pass along the path discovered by the recruiter. At the end of this path all
bees are free to independently search the solution space.

The proposed algorithm was tested on a various benchmark problems. Preliminary
results were presented in [17], while the exhaustive experimental evaluations are de-
scribed in [18]. The problem parameters range from instances with n = 100 up to the
instances with n = 5000 and from p = 4 to p = 100. The BCO parameters were B = 5,
NC = 10. The stopping criterion was the number of iterations and was equal to 100.

The authors compared the obtained BCO results with the optimal solution obtained
by using ILOG AMPL and CPLEX 11.2 optimization software. The comparison re-
sults are illustrated in the Table 3. Within this table, the number of machines, m, is
given in the first column, OPT denotes the optimal makespan, OPT Time is the value
of CPU time required by CPLEX for solving the corresponding problem example to
optimality. BCO represents objective function value obtained by the BCO algorithm;
BCO error denotes deviation of BCO solution from the optimum one, BCO time
shows the time required by BCO algorithm to obtain its final solution. The BCO algo-
rithm was able to obtain the optimal value of objective function in most of the test
problems. The CPU times required to find the best solutions by the BCO were negli-

gible. All tests were performed on Intel Core 2 Duo CPU E6750 on 2.66GHz with
RAM=8 Gb under Linux Slackware 12, Kernel: 2.6.21.5, gcc version 4.1.2.

Table 3. The comparison of the BCO results the optimal ones for n=5000

m OPT OPT
Time (sec)

BCO BCO
error %

BCO
time (sec)

 4 6844 1.112 6844 0.000 0.070
 8 3422 6.113 3422 0.000 0.209
 16 1711 9.786 1711 0.000 0.217
25 1095 30.288 1095 0.000 0.226

 50 548 28.561 548 0.000 0.251
 100 274 1130.310 277 1.095 0.560

Parallel BCO. The above described implementation represented good starting

point for testing parallelization strategies of BCO method. In [16] two synchronous
parallelization strategies of BCO were proposed. The parallel BCO search was im-
plemented on distributed memory IBM HPC Linux Cluster Server+16Η2 Dual Core
Intel Processors on 2.33GHz/1333MHz with 4MB RAM, Ethernet 3rd Party e1350
SMC 8848M Switch Bundle. The C programming language with MPI communication
library was used.

The proposed parallelization strategies were tested on a various problem instances,
the same one that have been used in [18]. It allowed authors to easily compare sequen-
tial and parallel BCO versions and measurement of the performance for various paral-
lelization strategies. The representative subset of test examples has been chosen,
namely the hard test instances from [15] with a priori known optimal solutions and the
largest size examples from [52] that require a significant CPU time to be solved.

The target architecture for parallelized BCO in [16] was homogeneous completely
connected network of processors. One of them is responsible for the communication
with user and is named master. It is usually marked as processor 0. The other q-1
processors are called working processors or slaves. Their marks are processor 1 up to
processor q-1. Parallel versions of BCO are executing on all q processors, i.e. compu-
tations are assigned to master too. Completely connected topology containing q=5
processors is shown on Fig. 10. In the experiments presented in [16] the number of
processors was changing from 2 to 12.

PROC.

PROC.

PROC.

PROC.

USER

4

0

PROC.23

1

Fig. 10. Complete interconnection network of q = 5 processors
We present here some of the results for coarse grained parallelization strategy

DBCO and for the other cases we just rewrite conclusions.
The results of scheduling one of the largest size examples from [52] (with 5000

tasks) on different number of machines are given in Table 4. These instances were not
too hard to be solved by sequential BCO, and even they were solvable to optimality by
CPLEX within a reasonable CPU time. For all examples, within DBCO parameter
settings were the following: B=5, NC=10 and stopping criterion 1000 iterations.

Table 4. The comparison of the sequential and parallel BCO, results for n=5000

m

q

OPT

DBCO

DBCO
time (sec)

Sq

Eq

4 1
2
3
4
5

6844 6844
6844
6844
6844
6844

60.04
31.83
21.36
15.99
12.76

1.00
1.89
2.81
3.75
4.71

1.00
0.94
0.94
0.94
0.94

 8 1
2
3
4
5

3422 3422
3422
3422
3422
3422

61.94
32.70
21.86
16.34
13.07

1.00
1.89
2.83
3.79
4.74

1.00
0.94
0.94
0.95
0.95

 16 1
2
3
4
5

1711 1711
1711
1711
1711
1711

65.65
34.77
23.20
17.38
13.89

1.00
1.89
2.83
3.78
4.73

1.00
0.94
0.94
0.94
0.95

25 1
2
3
4
5

1095 1095
1095
1095
1095
1095

69.75
37.12
24.76
18.50
14.12

1.00
1.88
2.82
3.77
4.70

1.00
0.94
0.94
0.94
0.94

 50 1
2
3
4
5

 548 548
548
548
548
548

81.03
43.51
29.04
21.73
17.41

1.00
1.86
2.79
3.73
4.65

1.00
0.93
0.93
0.93
0.93

 100 1
2
3
4
5

 274 277
277
277
277
277

104.46
 65.39
 37.54
 28.21
 22.56

1.00
1.85
2.78
3.70
4.63

1.00
0.93
0.93
0.93
0.93

The first column of the Table 4 contains the number m of machines within each ex-

ample. The number of parallel processors q executing DBCO is given in the second

column of our tables. Optimal schedule length represents the content of column three,
while lengths of schedules obtained by DBCO for different q are placed in the next
column. Column five in both tables contains CPU time required by DBCO to com-
plete 1000 iterations, actually the CPU time required by q processor to complete
1000/q iterations. The corresponding speedup Sq and efficiency Eq are given in the last
two columns. It is important to note that the CPU time required by DBCO to complete
all necessary computations is actually the CPU time of the processor that is the last
one to finish its work, i.e. it is equal to the maximum of all processors' running times.
Actually, in the resulting tables we put the best obtained schedule length and the long-
est required CPU time.

Since for the calculation of the speedup and efficiency, “the best sequential algo-
rithm” is required, in [16] it was assumed that BCO from [17, 18] can take the role of
the best sequential algorithm. To assure fairness of obtained results, parallel versions
of BCO were compared with the original sequential one executed on a single proces-
sor of given parallel architecture (instead of parallel version executed for q=1).

As can be seen from the results presented in Table 4 DBCO applied to those exam-
ples shows very good performance, almost linear speedup and above 90% efficiency,
and also the stability in the solution quality (there is no degradation in parallel execu-
tion). In some other examples parallelization, solution quality was changing, the au-
thors reported improvements or degradations of the solution quality for less than 3%.

When testing BBCO the authors obtained excellent (superlinar) speedup and effi-
ciency, due to the reduction of computations assigned to each processor. On the other
hand, FBCO resulted in slowing down the computations due to the communication
delays caused by intensive data exchange between processors. This strategy is obvi-
ously more suitable for shared memory multiprocessor systems.

5 Conclusion

The Bee Colony Optimization, one of the newer Swarm Intelligence technique, is a
meta-heuristic inspired by the foraging behavior of honeybees. It represents a general
algorithmic framework applicable to various optimization problems in management,
engineering, and control, and it should always be tailored for a specific problem. The
BCO method is based on the concept of cooperation, which increases the efficiency of
artificial bees and allows achievement of goals that could not be reached individually.
The BCO has the capability, through the information exchange and recruiting process,
to intensify the search in the promising regions of the solution space. When it is neces-
sary, the BCO can also diversify the search. Recruited bees "fly together" with the
recruiter along the path already generated by the recruiter. This means that partial
solution generated by the recruiter is associated (copied) to recruited bees also. When
they reach the end of the path, they are free to make an individual decision about the
next constructive step to be made. The freedom to make an individual decision consti-
tutes a diversifying element that complements the search intensification in the promis-
ing regions.

The BCO has already been successfully applied to several combinatorial optimiza-
tion problems, and we hope that expanded application reports are to come soon.
Moreover, the suitability for parallelization of the BCO algorithm opens not only a
new research direction but also some new potential applications. However, the BCO
has not been widely used for solving real-life problems and theoretical results support-
ing BCO concepts are still missing. This work is necessary in the future research.
Based on the achieved results and gained experience, new models founded on BCO
principles (autonomy, distributed functioning, self-organizing) are likely to signifi-
cantly contribute to solving complex engineering, management, and control problems.
Yet, the most important direction of the future research is the mathematical validation
of the BCO approach. In years to come, the authors expect more BCO based models,
examining, for instance, bees’ homogeneity (homogenous vs. heterogeneous artificial
bees), various information sharing mechanisms, and various collaboration mecha-
nisms.

Acknowledgment

This research is partially supported by the Ministry of Science of Serbia, Grants
No.144007 and 144033.

References

1. Abbass HA (2001) MBO: marriage in honey bees optimization-a Haplometrosis polygy-
nous swarming approach. In: Proceedings of the Congress on Evolutionary Computation.
Seoul, South Korea pp 207- 214

2. Afshar A, Bozorg Haddada O, Marin MA, Adams BJ (2007) Honey-bee mating
optimization (HBMO) algorithm for optimal reservoir operation. J. Frank. Instit. 344:452–
462

3. Baykasoglu A, Özbakýr L, Tapkan P (2007) Artificial Bee Colony Algorithm and Its Ap-
plication to Generalized Assignment Problem. In: Felix TSC, Manoj KT (eds) Swarm Intel-
ligence: Focus on Ant and Particle Swarm Optimization. Itech Education and Publishing,
Vienna, Austria pp 113-143

4. Benatchba K, Admane L, Koudil M (2005) Using Bees to Solve a Data-Mining Problem
Expressed as a Max-Sat One. In: Mira J, Alvarez JR (eds) IWINAC 2005, LNCS, 3562,
Springer-Verlag Berlin Heidelberg pp 212–220

5. Beni G (1988) The concept of cellular robotic system. In: Proceedings of the 1988 IEEE
International Symposium on Intelligent Control. IEEE Computer Society Press, Los Ala-
mitos, CA, pp 57–62

6. Beni G, Hackwood S(1992) Stationary waves in cyclic swarms. In: Proceedings of the 1992
International Symposium on Intelligent Control. IEEE Computer Society Press, Los Alami-
tos, CA, pp 234–242

7. Beni G, Wang J (1989) Swarm intelligence. In: Proceedings of the Seventh Annual Meet-
ing of the Robotics Society of Japan. RSJ Press, Tokyo, pp 425–428

8. Bonabeau E, Dorigo M, Theraulaz G (1997) Swarm Intelligence. Oxford University Press,
Oxford

9. Brawer S (1989) Introduction to Parallel Programming. Academic Press, Inc
10. Camazine S, Sneyd J (1991) A Model of Collective Nectar Source by Honey Bees: Self-

organization Through Simple Rules. J. Theor. Biol. 149:547-571
11. Chong CS, Low MYH, Sivakumar AI, Gay KL (2006) A Bee Colony Optimization Algo-

rithm to Job Shop Scheduling Simulation. In: Perrone LF, Wieland FP, Liu J, Lawson BG,
Nicol DM, Fujimoto RM (eds) Proceedings of the Winter Conference, Washington, DC pp
1954 – 1961

12. Crainic TG, Hail N (2005) Parallel meta-heuristics applications. In: Alba E (eds) Parallel
Metaheuristics, John Wiley & Sons, Hoboken, NJ pp 447-494

13. Crainic TG, Toulouse M (2003) Parallel strategies for metaheuristics. In: Glover F, Ko-
chenberger G (eds) Handbook in Metaheuristics, Kluwer Academic Publishers, pp 475-513

14. Cung VD, Martins SL, Ribeiro CC, Roucairol C (2002) Strategies for the parallel imple-
mentations of metaheuristics. In: Ribeiro CC, Hansen P (eds) Essays and Surveys in Meta-
heuristics, Kluwer Academic Publishers, Norwell, MA pp 263-308

15. Davidović T, Crainic TG (2006) Benchmark problem instances for static task scheduling of
task graphs with communication delays on homogeneous multiprocessor systems. Comput.
Oper. Res. 33:2155-2177

16. Davidović T, Ramljak D, Šelmić M, Teodorović D (2010) Parallel Bee Colony
Optimization for Scheduling Independet Tasks to Identical Machines, CCGrid2010
(submitted)

17. Davidović T, Šelmić M, Teodorović D (2009) Scheduling Independent Tasks: Bee Colony
Optimization Approach. In: Proceedings of the 17th Mediterranean Conference on Control
and Automation, MED'09, Thessaloniki, Greece pp 1020-1025

18. Davidović T, Šelmić M, Teodorović D (2009) Bee colony optimization for scheduling
independent tasks to identical processors (submitted)

19. Drias H, Sadeg S, Yahi S (2005) Cooperative Bees Swarm for Solving the Maximum
Weighted Satisfiability Problem. In : Computational Intelligence and Bioinspired Systems,
Lecture Notes in Computer Science 3512, Springer Berin/Heilderberg pp 318-325

20. Edara P, Šelmić M, Teodorović D (2008) Heuristic Solution Algorithms for a Traffic
Sensor Optimization Problem, INFORMS 2008, Washington D.C.

21. Fathian M, Amiri B, Maroosi B (2008) A honeybee-mating approach for cluster analysis.
Int. J. Adv. Manuf. Technol. 38: 809–821

22. Ferreira A, Morvan M (1997) Models for parallel algorithm design: An introduction. In:
Migdalas A, Pardalos P, Storǿy S (eds) Parallel Computing in Optimization, Kluwer Aca-
demic Publishers, Dordrecht Boston London pp 1-26

23. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization (Tech-
nical Report-Tr06), Erciyes University, Engineering Faculty Computer Engineering De-
partment Kayseri/Türkiye

24. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm. J. Global. Optim. 39:459-471

25. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algo-
rithm. Appl. Soft. Comput. 8:687–697

26. Karaboga D, Basturk Akay B, Ozturk C (2007) Artificial Bee Colony (ABC) Optimization
Algorithm for Training Feed-Forward Neural Networks. In: LNCS: Modeling Decisions for
Artificial Intelligence, Springer-Verlag, Berlin Heidelberg pp 318-319

27. Kaufmann A, Gupta M (1988) Introduction to Fuzzy Arithmetic. New York: Van Nostrand
Reinhold Company

28. Koudil M, Benatchba K, Tarabetand A, El Batoul Sahraoui (2007) Using artificial bees to
solve partitioning and scheduling problems in codesign. Appl. Math. Comput. 186:1710-
1722

29. Lučić P, Teodorović D (2001) Bee system: modeling combinatorial optimization transpor-
tation engineering problems by swarm intelligence. In: Preprints of the TRISTAN IV Tri-
ennial Symposium on Transportation Analysis, Sao Miguel, Azores Islands, Portugal, pp
441–445

30. Lučić P, Teodorović D (2002) Transportation modeling: an artificial life approach. In:
Proceedings of the 14th IEEE ‘‘International Conference on Tools with Artificial Intelli-
gence, Washington, DC, pp 216–223

31. Lučić P, Teodorović D (2003) Computing with bees: attacking complex transportation
engineering problems. Int. J. Artif. Intell. T. 12: 375–394

32. Lučić P, Teodorović D (2003) Vehicle routing problem with uncertain demand at nodes:
the bee system and fuzzy logic approach. In: Verdegay JL (eds) Fuzzy Sets in Optimization.
Springer-Verlag, Heidelberg Berlin, pp 67–82

33. Marković G, Teodorović D, Aćimović-Rspopović V (2007) Routing and wavelength as-
signment in all-optical networks based on the bee colony optimization. AI Commun.
20:273–285

34. McFadden D (1973) Conditional Logit Analysis of Quantitative Choice Behavior. In:
Zaremmbka P (eds), Frontier of Econometrics. Academic Press, New York

35. Navrat P (2006) Bee Hive Metaphor for Web Search. In: Rachev B, Smrikarov A, (eds)
Proceedings of the International Conference on Computer Systems and Technologies –
CompSysTech. Veliko Turnovo, Bulgaria, IIIA. pp 1-7

36. Pham DT, Ghanbarzadeh A, Koc E, Otri S, Zaidi M (2006) The Bees Algorithm - A Novel
Tool for Complex Optimisation Problems. In: Proceedings of the 2nd Virtual International
Conference on Intelligent Production Machines and Systems (IPROMS 2006), Elsevier,
Cardiff, pp 454-459

37. Pham DT, Soroka AJ, Ghanbarzadeh A, Koc E (2006) Optimising Neural Networks for
Identification of Wood Defects Using the Bees Algorithm. In: Proceedings of the IEEE In-
ternational Conference on Industrial Informatics, Singapore pp 1346-1351

38. Pham DT, Haj Darwish A, Eldukhr EE (2009) Optimisation of a fuzzy logic controller
using the Bees Algorithm. Int. J., Comp. Aid. Eng. Tech. 1250 – 264

39. Porto SCS, Kitajima JPFW, Ribeiro CC (2000) Performance evaluation of a parallel tabu
search task scheduling algorithm. Parallel Computing 26:73-90

40. Quijano N, Passino KM (2007) Honey Bee Social Foraging Algorithms for Resource
Allocation, Part I: Algorithm and Theory. In: Proceedings of the 2007 American Control
Conference, New York pp 3383-3388

41. Quijano N, Passino KM (2007) Honey Bee Social Foraging Algorithms for Resource Allo-
cation, Part II: Application. In: Proceedings of the 2007 American Control Conference,
New York pp 3389-3394

42. Quinn MJ (1987) Designing efficient algorithms for parallel computers. McGraw-Hill
43. Sato T, Hagiwara M (1997) Bee System: Finding Solution by a Concentrated Search. In:

Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics
“Computational Cybernetics and Simulation“. Orlando, FL, USA pp 3954-3959

44. Šelmić M, Edara P, Teodorović D (2008) Bee Colony Optimization Approach To Optimize
Locations Of Traffic Sensors On Highways. Tehnika 6:9-15 (in Serbian)

45. Teodorović D (2003) Transport Modeling by Multi-Agent Systems: A Swarm Intelligence
Approach. Transport. Plan. Techn. 26: 289–312

46. Teodorović D (2008) Swarm Intelligence Systems for Transportation Engineering: Princi-
ples and Applications. Transp. Res. Pt. C-Emerg. Technol. 16: 651-782

47. Teodorović D (2009) Bee Colony Optimization (BCO). In: Lim CP, Jain LC, Dehuri S
(eds) Innovations in Swarm Intelligence. Springer-Verlag, Berlin Heidelberg pp 39-60

48. Teodorović D, Dell’Orco M (2005) Bee colony optimization – a cooperative learning
approach to complex transportation problems. In: Advanced OR and AI Methods in Trans-

portation. Proceedings of the 10th Meeting of the EURO Working Group on Transporta-
tion, Poznan, Poland, pp 51–60

49. Teodorović D, Dell’Orco M (2008) Mitigating traffic congestion: solving the ride-matching
problem by bee colony optimization. Transport. Plan. Techn. 31:135–152

50. Teodorović D, Lučić P, Marković G, Dell’ Orco M (2006) Bee colony optimization: prin-
ciples and applications. In: Reljin B, Stanković S (eds) Proceedings of the Eight Seminar
on Neural Network Applications in Electrical Engineering – NEUREL 2006, University of
Belgrade, Belgrade pp 151–156

51. Teodorović D, Šelmić M (2007) The BCO Algorithm For The p Median Problem. In:
Proceedings of the XXXIV Serbian Operations Research Conference. Zlatibor, Serbia pp
417-420 (in Serbian)

52. Tobita T, Kasahara H (2002) A standard task graph set for fair evaluation of multiprocessor
scheduling algorithms. J. Sched. 5:379-394

53. Todorović N, Petrović S, Teodorović D (2009) Bee Colony Optimization for Nurse Roster-
ing (submitted)

54. Verhoeven MGA, Aarts EHL (1995) Parallel local search. J. Heur. 1:43-65
55. Wedde HF, Farooq M, Zhang Y. (2004) BeeHive: An efficient fault-tolerant routing algo-

rithm inspired by honey bee behavior. In: Ant Colony Optimization and Swarm Intelli-
gence. LNCS 3172, Springer-Verlag, Berlin pp 83–94

56. Wedde HF, Timm C, Farooq M (2006) BeeHiveAIS: A Simple, Efficient, Scalable and
Secure Routing Framework Inspired by Artificial Immune Systems. In: Runarsson TP et al.
(eds) LNCS 4193, Springer-Verlag, Berlin Heidelberg pp 623–632

57. Wedde HF, Lehnhoff S, van Bonn B, Bay Z, Becker S, Böttcher S, Brunner C, Büscher A,
Fürst T, Lazarescu M, Rotaru E, Senge, Steinbach B, Yilmaz F, Zimmermann T (2007) A
Novel Class of Multi-Agent Algorithms for Highly Dynamic Transport Planning Inspired
by Honey Bee Behavior. In: Proceedings of the 12th IEEE International Conference on Fac-
tory Automation, Patras, Greece pp 1157-1164

58. Yang C, Chen J, Tu X (2007) Algorithm of Fast Marriage in Honey Bees Optimization and
Convergence Analysis. In: Proceedings of the IEEE International Conference on Automa-
tion and Logistics, Jinan, China pp 1794-1799

59. Yang X-S (2005) Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms.
In: Mira J, Alvarez JR (eds) IWINAC 2005, Lecture Notes in Computer Science 3562,
Springer-Verlag Berlin Heidelberg pp 317-323

60. Yonezawa Y, Kikuchi T (1996) Ecological algorithm for optimal ordering used by collec-
tive Honey bee behavior. In: Proceedings of the Seventh International Symposium on Mi-
cro Machine and Humane Science. Nagoya, Japan pp 249- 255

61. Zaheh L (1965) Fuzzy sets. Information and Control 8:338-353

