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Abstract. The Bee Colony Optimization (BCO) meta-heuristic belongs to the 
class of Nature-Inspired Algorithms. This technique uses an analogy between 
the way in which bees in nature search for a food, and the way in which optimi-
zation algorithms search for an optimum in combinatorial optimization prob-
lems. Artificial bees represent agents, which collaboratively solve complex 
combinatorial optimization problem. The chapter presents a description of the 
algorithm, classification and analysis of the results achieved using Bee Colony 
Optimization (BCO) to model complex engineering and management processes. 

1   Introduction 

The Bee Colony Optimization (BCO) meta-heuristic [29, 30, 31, 32] belongs to the 
class of Nature-Inspired Algorithms. These algorithms are inspired by various bio-
logical and natural processes. Natural systems have become important sources of ideas 
and models for development of various artificial systems. The popularity of the Na-
ture-Inspired Algorithms is mainly caused by the capability of biological systems to 
successfully adjust to continually varying environment. Neural networks, evolutionary 
computation, ant colony optimization, particle swarm optimization, artificial immune 
systems, and bacteria foraging algorithm are some of the algorithms and concepts that 
were inspired by nature.  

Individuals in various biological systems are engaged in cooperation, collaboration, 
information exchange, and/or conflicts. In many cases, individuals, that are autono-
mous in their decision-making, work together with other individuals in order to 
achieve specific objective. Natural phenomena lecture us that simple individual organ-
isms can create systems able to perform highly complex tasks by interacting with each 
other.  

Few algorithms inspired by bees’ behavior appeared during the last decade (Bee 
System, BCO algorithm, ABC algorithm, MBO, Bees Algorithm, HBMO algorithm, 
BeeHive, VBA algorithm) [1, 2, 4, 11, 19, 21, 23, 24, 25, 26, 28, 35, 36, 37, 38, 40, 
41, 42, 43, 55, 56, 57, 58, 59, 60]. Yonezava and Kikuchi [60] analyzed collective 
intelligence based on bees’ behavior. Sato and Hagiwara [43] proposed modified 
genetic algorithm named Bee System. In essence, this algorithm belongs to the class of 



genetic algorithms. Abbas [1] developed MBO model that is based on the marriage 
process in honeybees. BeeHive [55, 56, 57], Artificial Bee Colony (ABC) algorithm 
[23, 24, 25] and Bees Algorithm [36, 37, 38] are based on foraging behavior in hon-
eybees but all of them use different concepts for algorithm development. An excellent 
survey of the Bees’ behavior inspired algorithms could be found in Baykasoglu et al. 
[3].  

The BCO meta-heuristic [29, 30, 31, 32] has been proposed quite recently by Lučić 
and Teodorović. The BCO is inspired by foraging behavior in honeybees. (Lučić and 
Teodorović used the term “Bee System” in their first paper). The basic plan behind 
the BCO is to build the multi agent system (colony of artificial bees) able to efficiently 
solve hard combinatorial optimization problems. The artificial bee colony behaves 
partially similar, and partially in a different way from bee colonies in nature.   

The BCO meta-heuristic has been recently used as a toll for solving large and com-
plex real-world problems. It has been shown that the BCO poses an ability to find high 
quality solutions of difficult combinatorial problems within a reasonable amount of 
computer time. The BCO is a stochastic, random-search technique. This technique 
uses an analogy between the way in which bees in nature search for a food, and the 
way in which optimization algorithms search for a optimum of (given) combinatorial 
optimization problems. The basic idea behind the BCO is to build the multi agent 
system (colony of artificial bees) able to effectively solve difficult combinatorial op-
timization problems. Artificial bees investigate through the search space looking for 
the feasible solutions. In order to find better and better solutions, autonomous artificial 
bees collaborate and exchange information. Using collective knowledge and sharing 
information among themselves, artificial bees concentrate on more promising areas, 
and slowly abandon solutions from the less promising areas. Step by step, artificial 
bees collectively generate and/or improve their solutions. The BCO search is running 
in iterations until some predefined stopping criteria is satisfied.   

The BCO works in a self-organized and decentralized way and therefore represents 
a good basis for parallelization. It also poses an ability to keep away from becoming 
trapped in local minima.  

This chapter presents a description of the BCO and some of its modifications, as 
well as the classification and analysis of the results achieved using BCO to model 
complex engineering and management processes. We initially portray the behavior of 
bees’ in nature, and then we describe a general Bee Colony Optimization algorithm. 
Afterwards, we present some modifications of BCO that allow its application to some 
non-standard combinatorial optimization problems. Later on, we describe BCO appli-
cations in different engineering and management problems. The BCO has been suc-
cessfully applied to various engineering and management problems by Teodorović 
and coauthors [16, 17, 18, 20, 33, 44, 45, 46, 47, 48, 49, 50, 51]. The BCO has been 
applied in the cases of the Traveling Salesman Problem [29, 30, 31], the Ride-
Matching Problem [48, 49], the Routing and Wavelength Assignment (RWA) in All-
Optical Networks [33], the p-median problem [51], static scheduling of independent 
tasks on homogeneous multiprocessor systems [17, 18], and traffic sensors locations 
problem on highways [20, 44].  



2   Biological Background 

Swarm behavior (fish schools, flocks of birds, and herds of land animals) is based on 
the biological needs of individuals to stay together. When staying together, individu-
als have a higher probability to stay alive, since predator usually attacks only one 
individual. Flocks of birds, herds of animals, and fish schools are characterized by 
collective movement. Herds of animals react at once to changes in the course and 
speed of their neighbors.  

Colonies of various social insects (bees, wasps, ants, termites) are also character-
ized by swarm behavior. Swarm behavior is primarily characterized by autonomy, 
distributed functioning and self-organizing. The communication systems between 
individual insects contribute to the pattern called the ‘‘collective intelligence” of the 
social insect colonies. The term ‘‘Swarm Intelligence”, that denotes this ‘‘collective 
intelligence”, has been introduced in [5, 6, 7, 8].  

Swarm Intelligence [8] is the branch of Artificial Intelligence. Swarm Intelligence 
is based on investigation of actions of individuals in different decentralized systems. 
These decentralized systems (Multi Agent Systems) are composed of physical indi-
viduals (robots, for example) or “virtual” (artificial) ones that communicate among 
themselves, cooperate, collaborate, exchange information and knowledge and perform 
some tasks in their environment. When designing Swarm Intelligence models, re-
searchers use some principles of the natural swarm intelligence. The development of 
artificial systems usually does not involve the entire imitation of natural systems, but 
explores them while searching for ideas and models.  

As we already mentioned, the BCO is inspired by foraging behavior of honeybees. 
Bees in nature look for a food by exploring the fields in the neighborhood of their 
hive. They collect and accumulate food for later use by other bees. Typically, in the 
initial step, some scouts search the region. Completing the search, scout bees will 
return to the hive and inform their hive-mates about the locations, quantity and quality 
of available food sources in the areas they have examined. In case they have discov-
ered nectar in the previously investigated locations, scout bees will dance in the so-
called “dance floor area” of the hive, in an attempt to “advertise” food locations and 
encourage the remaining members of the colony to follow their lead. The information 
about the food quantity is presented using a ritual called a “waggle dance”. If a bee 
decides to leave the hive to collect nectar, it will follow one of the dancing scout bees 
to the previously discovered patch of flowers. Upon arrival, the foraging bee takes a 
load of nectar and returns to the hive relinquishing the nectar to a food storer bee. 
Several scenarios are then possible for a foraging bee: (1) it can abandon the food 
location and return to its role of an uncommitted follower; (2) it can continue with the 
foraging behavior at the discovered nectar source, without recruiting the rest of the 
colony; (3) it can recruit its hive-mates with the dance ritual before the return to the 
food location. The bee opts for one of the above alternatives with a certain probabil-
ity. The described process continues repeatedly, while the bees at a hive accumulate 
nectar and explore new areas with potential food sources. As several bees may be 
attempting to recruit their hive-mates at the dance floor area at the same time, it is 
unclear how a bee resting at a hive decides which dancing bee to follow, although it 



has been considered that “the recruitment among bees is always a function of the qual-
ity of the food source” [10].  

3   Bee Colony Optimization (BCO) Algorithm  

The BCO belongs to the class of population-based algorithms. It has been proposed 
for the first time in [29, 30, 31] and was evolving through later applications. The early 
versions of the algorithm were imitating the behavior of the bees in the nature to a 
larger extent. These versions were characterized by the scout bees, an important role 
of the hive location, and recruiting process that is more like the natural one than it is 
the case in the current version of the algorithm. In this section we describe in details 
the current version and we will point out the differences while presenting the concrete 
applications.  

Population of agents (artificial bees) consisting of B bees collaboratively searches 
for the optimal solution. Every artificial bee generates one solution to the problem. 
There are two alternating phases (forward pass and backward pass) constituting single 
step in the BCO algorithm. In each forward pass, every artificial bee explores the 
search space. It applies a predefined number of moves, which construct and/or im-
prove the solution, yielding to a new solution. For example, let bees Bee 1, Bee 2, …, 
Bee B participate in the decision-making process on n entities. At each forward pass 
bees are supposed to select one entity. The possible situation after third forward pass 
is illustrated on Fig.1. 
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Fig. 1. An illustration of the third forward pass  

Having obtained new partial solutions, the bees go again to the hive and start the 
second phase, the so-called backward pass. In the backward pass, all artificial bees 
share information about the quality of their solutions. In nature, bees would return to 
the hive, perform a dancing ritual, which would inform other bees about the amount of 



food they have discovered, and the proximity of the patch to the hive. In the search 
algorithm, the bees announce the quality of the solution, i.e. the value of objective 
function is computed. Having all solutions evaluated, every bee decides with a certain 
probability whether it will stay loyal to its solution or not. The bees with better solu-
tions have more chances to keep and advertise their solutions. On the contrary to the 
bees in nature, artificial bees that are loyal to their partial solutions are at the same 
time recruiters, i.e. their solutions would be considered by other bees. Once the solu-
tion is abandoned by a bee it becomes uncommitted and has to select one of the adver-
tised solutions. This decision is taken with a probability too, so that better advertised 
solutions have bigger opportunity to be chosen for further exploration. In such a way, 
within each backward pass all bees are divided into two groups (R recruiters, and 
remaining B-R uncommitted bees) as it is shown on Fig. 2. Values for R and B-R are 
changing from one backward pass to another one.  
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Fig. 2. Recruiting of uncommitted followers 

After comparing all generated partial solutions, Bee 2, from the previous example 
decided to abandon already generated solution and to join Bee B (see Fig.3). 
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 Fig. 3. The possible result of a recruiting process within third backward pass 



Bee 2 and Bee B "fly together" along the path already generated by the Bee B. In 
practice, this means that partial solution generated by Bee B is associated (copied) to 
Bee 2 also. When they reach the end of that common path, they are free to make an 
individual decision about the next constructive step to be made. The Bee 1 will keep 
already generated partial solution without being chosen by any of the uncommitted 
hive-mates, and therefore, it will perform new constructive step independently. The 
described situation is illustrated on Fig.4. 
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 Fig. 4. An example of partial solutions after fourth forward 

 
The two phases of the search algorithm, forward and backward pass, are alternating 

in order to generate all required feasible solutions (one for each bee). When all solu-
tions are completed the best one is determined, it is used to update global best solution 
and an iteration of the BCO is accomplished. At this point all B solutions are deleted, 
and the new iteration could start. The BCO runs iteration by iteration until a stopping 
condition is met. The possible stopping conditions could be, for example, the maxi-
mum total number of forward/backward passes, the maximum total number of for-
ward/backward passes without the improvement of the objective function, maximum 
allowed CPU time, etc. At the end, the best found solution (the so called global best) 
is reported as the final one.  

The algorithm parameters whose values need to be set prior the algorithm execu-
tion are as follows: 

 
B -  The number of bees in the hive; 
NC - The number of constructive moves during one forward pass. 
 
At the beginning of the search, all the bees are in the hive. According to the main 

idea in the current version of the BCO algorithm, the hive is an artificial object, with-
out precise location and does not influence the algorithm execution. It is used only to 
denote the synchronization points at which bees are exchanging information about the 



current state of the search. The pseudocode of the BCO algorithm could be described 
in the following way:  

1. Initialization: an empty solution is assigned to every bee; 

2. For every bee: // the forward pass 

i. Set k = 1;  //counter for constructive moves in the forward pass; 

ii. Evaluate all possible constructive moves; 

iii. According to evaluation, choose one move using the roulette wheel; 

iv. k = k + 1; If k ≤ NC Goto step ii. 

3. All bees are back to the hive; // backward pass starts; 

4. Evaluate (partial) objective function value for each bee;  

5. Every bee decides randomly whether to continue its own exploration and be-
come a recruiter, or to become a follower; 

6. For every follower, choose a new solution from recruiters by the roulette 

               wheel; 

7. If solutions are not completed Goto step 2; 

8. Evaluate all solutions and find the best one; 

9. If the stopping condition is not met Goto step 2; 

10. Output the best solution found.  

3.1   Constructive and Improving Alternatives of the BCO Algorithms 

Until now, the BCO algorithms in the literature have been constructive. The BCO 
starts from scratch and, for each bee, constructs a solution step by step applying some 
stochastic problem specific heuristics. Randomness induced by these stochastic con-
struction processes assures diversity of the search. Within each iteration B solutions 
are generated and the best of them is used for updating the current global best solu-
tion. Next iteration then results in B new solutions among which we search for the new 
global best one. 

The BCO could also work as an improving algorithm. In this case, the analyst 
would start from a complete solution. The complete solution could be generated ran-
domly or by some heuristics. By perturbing that solution, artificial bees would try to 
improve it. Todorović et al. in [53] developed a bee colony approach for the nurse 
rostering problem. Their approach is the first one that allows both constructive and 
improving steps to be applied and combined together. The developed algorithm was 
designed to be a combination of constructive and local search phases. In the construc-
tive phase, unscheduled shifts are assigned to available nurses. A local search move 
could be applied to both partial and complete rosters. Its role was to modify a roster 
either by swapping assignments of nurses, or by reassigning a shift to another nurse. 



The proposed approach also incorporated a novel intelligent discarding of portions of 
large neighborhoods for which it is predicted that they will not lead to the improve-
ment of the objective function.  The performance of the algorithm was evaluated on 
real world data from hospitals in Belgium.  

The idea of improving alternatives could be developed in many different ways, and 
this approach certainly may be very useful for solving difficult combinatorial optimi-
zation problems.  

3.2   The Artificial Bees and Fuzzy Logic 

In most of the models it is assumed that problem data (costs, capacity, distance, dura-
tion etc.) are deterministic quantities known in advance. On the other hand, the travel 
time between two nodes in a network, for example, involves an uncertainty due to 
traffic conditions, type of driving, weather conditions, choice of streets, and so on. 
Our subjective feeling regarding travel time is often not very precise. For example, the 
estimate is made that it takes “approximately 30 minutes” to go from one node to 
another. No one will claim that it takes 27 minutes when subjectively estimating travel 
time. Estimating travel time in this way is not the result of objective measurements but 
is a subjective estimation that differs among drivers. Travel time has often been 
treated as a random variable, and this treatment required travel time measurements 
and the establishment of a certain probability density function. However, dispatchers-
decision makers most often make a subjective estimate of travel time based on their 
experience and intuition, expressing the estimated travel time as “short,” “long,” 
“about 20 minutes,” and so on. Travel time between two nodes in a network can be 
treated as fuzzy number. (Most sets in reality have no sharp line between the elements 
in the set and those outside the set. The simplest examples of fuzzy sets are classes of 
elements characterized by adjectives: big, small, fast, old, etc. With fuzzy sets the 
membership function is associated and it takes continuous values from the closed 
interval [0,l]. Fuzzy set A is defined as a set of ordered pairs A = { })(, xµx A  where 

)(xµA indicates the grade of membership of element x in set A [61]. For example, if x 

is the travel time between two nodes, then short could be considered as a particular 
value of the fuzzy variable travel time. To each x a number [ ]1,0∈)(xµA  is assigned. 

This number shows the extent to which x is considered to be short.).  
The fuzzy set of subjectively estimated travel time between nodes i and j is de-

noted by T. In order to simplify the arithmetic operations, the travel time T is assumed 
to be a triangular fuzzy number. Triangular fuzzy number T is expressed as: 

( )321 ,,= tttT      (1) 

where t1, t2, and t3 are the lower boundary, the value that corresponds to the highest 
grade of membership, and the upper boundary of fuzzy number T, respectively [27]. 

The BCO application on models with fuzzy logic is almost the same as application 
on deterministic models. Main differences are in the part when: 

- bees’ partial solutions are compared; 
- different component attractiveness is calculated. 



In the first case, Kaufmann and Gupta's method [27] can be used to compare fuzzy 
numbers. In the second case, the approximate reasoning algorithm for calculating the 
solution component attractiveness could be applied. This algorithm is usually com-
posed from the rules of the following type (Fig. 5):  

 
If the attributes of the solution component are VERY GOOD 
Then the considered solution component is VERY ATTRACTIVE 
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Fig. 5. Fuzzy sets describing attractiveness  

The approximate reasoning based on Fuzzy Logic has been used in [32] to model 
uncertain demands in nodes when solving vehicle routing problem and in [48, 49] to 
model some uncertain quantities for solving Ride-Matching problem.  

3.3   Parallelization of Bee Colony Optimization 

The BCO algorithm created as a multi agent system provides a good basis for the 
parallelization on different levels. It seems to have significant amount of inherent 
parallelism. Therefore, studying the potential strategies for its parallelization, repre-
sent fruitful research field. As of the authors’ knowledge, the only paper proposing 
strategies for parallelization of the BCO is [16]. In this subsection we will describe 
those and discuss some other potential parallelization strategies of BCO. First we give 
short description of specific points in parallelization of meta-heuristics (stochastic 
search algorithms for combinatorial optimization), an overview of parallel meta-
heuristic classification and taxonomy, and then we describe parallelization of BCO 
based on the synchronous strategy. 

The main goal of parallelization of any algorithm is to speedup the computations 
needed to solve a particular problem by engaging several processors and divide the 
total amount of work between them. For stochastic algorithms this goal may be de-
fined in one of the following two ways: 1) accelerate the search for the same quality 
solution or 2) improve the solution quality by allowing more processors to run the 
same amount of (CPU or wall-clock) time as the single one does. When meta-
heuristics are in consideration, the combination of gains may be obtained: parallel 
execution can enable efficient search of different regions of the solution space yield-
ing to the improvement of the final solution quality within smaller amount of execu-
tion time. 



A significant amount of work has already been done on parallelization of meta-
heuristics. The approach can be twofold. The theoretical aspects of parallelization 
could be considered, and practical applications of parallel meta-heuristics to different 
optimization problems proposed. Different parallelization strategies had been pro-
posed in the recent literature dealing with various meta-heuristic methods [13, 22, 39]. 
The survey papers [12, 54] summarize these works and propose adequate taxonomy. 

One of the first classifications of parallelization strategies was proposed in [54]. It 
is based on the control of the search process and results in two main groups of paral-
lelization strategies: single walk and multiple walks parallelism. Single walk paralleli-
zation assumes that the unique search trajectory is generated and only required com-
putations are performed in parallel. It is connected to the fine granularity of tasks to be 
executed in parallel and usually, it is devoted to speedup the execution without affect-
ing the final solution quality.  

Multiple walks parallelization strategy involves different search trajectories ex-
plored by different processors. It assumes medium to coarse granulation of tasks and 
they could be executed independently or in cooperation. The simplest example of 
multiple walks parallel search is independent run. It is the parallel simulation of the 
multistart execution and it does not involve information exchange during the search. 
Cooperative execution assumes data exchange during the search which affects the 
search trajectory on each processor.  

To refine the classification of parallelization strategies, one has to consider com-
munication aspects (synchronous or asynchronous) and search parameters (same or 
different initial point and/or same or different search strategies). The resulting classifi-
cation is described in details in [12]. 

As we already mentioned, the BCO algorithm created as a multi agent system,   
provides a good basis for the parallelization on different levels. High level paralleliza-
tion assumes coarse granulation of tasks and can be applied to iterations of BCO. 
Smaller parts of BCO algorithms (forward and backward passes within a single itera-
tion) also contain a lot of independent executions and are suitable for low level paral-
lelization. In [16] the authors considered both strategies in a synchronous way. 

High level parallelization in its simplest form represents the independent execution 
of BCO on different processors. It could be obtained by the division of stopping crite-
ria among processors. For example, if the stopping criteria is allowed CPU time (giv-
en as a runtime value in seconds), the BCO could run in parallel on q processors for 
runtime/q seconds. Similar rule can be introduced in the case when stopping criteria is 
allowed number of iterations. In both cases each processor performs independently 
sequential variant of BCO, but with reduced value of the stopping criteria. This 
variant of parallelized BCO was named distributed BCO (DBCO). Other way to im-
plement coarse grained parallelization strategy could be the following: Instead of the 
stopping criterion the number of bees could be divided. Namely, if sequential execu-
tion uses B bees for the search, parallel variant executing on q processors would be 
using B/q bees only. This way results in sequential BCO on each processor, but with 
reduced number of bees. This variant is also distributed BCO, but was referred to as 
BBCO since the bees were distributed among processors.  

Independent runs on different processors allow also changes of search parameters 
and therefore, this parallelization strategy belongs to the multiple walks group. Name-



Namely, once the stopping criteria is reduced, different values could also be assigned 
to the number of bees B and/or to the number NC of constructive moves within a sin-
gle forward pass for each BCO executing on different processors. Similarly, for 
BBCO the number of bees does not have to be equally distributed among processors: 
the variant in which for each processor different number of bees (between 1 and B) is 
assigned with the same value for NC would provide different searches on different 
processors and therefore would represent the multiple walks parallelization strategy. 

The implementation of low level parallelization strategy in [16] was named FBCO 
and it was based on the following facts.  Each artificial bee acts as an individual agent 
during the forward pass when partial solutions are generated. The generation of partial 
solution is independent from the rest of the computations. This enables the fine level 
parallelization (the one from single walk group). Within the concrete implementation, 
in [16] the following scenario appeared: forward pass is executed independently on 
different processors while backward pass requires tight coordination between proces-
sors. For the corresponding computations within backward pass it is necessary to have 
the information about all generated partial solutions. Nevertheless, those computations 
could be done either sequentially by a single processor (master), or spread among all 
processors and accompanied by required communication. This communication is 
known to be the main bottleneck of parallel execution if distributed memory multi-
processor system is used. In that case, it is important to reduce both the amount of data 
and the number of transfers (messages). 

The implementation of FBCO required the authors to define the relation between 
the number of processors q and the number of bees B. Namely, each processor was 
responsible for B/q bees, and therefore, these two numbers should be divisible. 

There are some other possible parallelization strategies that could be applied to 
BCO and that belong to the classification proposed in [12].  For example, the bees 
could be allowed to perform several forward-backward passes before initiating com-
munication between processors. During that period, loyalty could be determined only 
with respect to the bees from the same processor. Once communication is initiated, 
bees from different processors should have higher probability to be chosen by an un-
committed follower. The other way could be to develop an architecture dependent 
parallelization strategy. For example, within a ring topology, a processor communi-
cates only with its neighbors. Therefore, the partial solutions are sent only to the next 
processor, and received only from the previous one in the ring. Again, the decisions 
about the loyalty would be made based on incomplete information. The above men-
tioned parallelization strategies already introduce asynchronous concepts in BCO, but 
it could be even more developed within potential future research.  

The well known performance measures for parallel programs are speed-up Sq and 
efficiency Eq [9, 42]. They are defined as follows: 
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Here, best
seqT  denotes the execution time of best known sequential algorithm on a 

single processor, while Tq represents the execution time of the parallel algorithm on q 
processors.  

When meta-heuristics are under consideration, the performance of parallelization 
strategy is influenced also by the quality of final solution. Namely, meta-heuristics 
represent stochastic search procedures (and BCO is not an exception) which may not 
result with a same solution even in repeated sequential executions. On the other hand, 
parallelization may assure the extension of the search space which could yield to both 
improvement or degradation of the final solution quality. Therefore, the quality of 
final solution should also be considered as a parameter of parallelization strategy 
performance.  

4   BCO Applications   

4.1   Solving the Traveling Salesman Problem by BCO 

Lučić and Teodorović [29, 30, 31] tested the Bee Colony Optimization approach in 
the case of Traveling Salesman Problem (TSP). The well known Traveling Salesmen 
Problem is defined in the following way: Given n nodes, find the shortest itinerary that 
starts in a specific node, goes through all other nodes exactly once and finishes in the 
starting node.  

When solving the TSP problem the authors were also developing the BCO algo-
rithm and it had more similarities with the behavior of bees in the nature, than the 
recent version of algorithm. The main difference between these two versions is in the 
fact that hive had an important role in the previous one. The hive had specified loca-
tion that could also be changed during the search process. The other difference is that 
not all the bees are engaged at the beginning of the search process. The scout bees 
start the search, and at each stage new bees join it by recruiting process. 

In [29, 30, 31] the authors locate hive at random node and decompose the TSP 
problem into stages. At each stage (corresponding to the forward pass of BCO), a bee 
chooses the new nodes to be added to the partial Traveling Salesman tour created so 
far. This selection was performed in random manner with certain probabilities. Lučić 
and Teodorović [29, 30, 31] proposed Logit-based model for calculating the probabil-
ity of choosing next node to be visited. Logit model is one of the most successful and 
widely accepted discrete choice model [34]. When calculating this probability, the 
proposed model took into account the distance between current node (and/or hive) and 
node-candidate to be visited, the total number of performed iterations in a search 
process, as well as the total number of bees that visited considered link in the past. 
The proposed model was represented by the complex and complicated formulae, and 
was not used in subsequent research by other researchers.  

During the backward pass each bee decided whether to abandon the generated par-
tial solution (i.e. return to its role of an uncommitted follower) or keep it (i.e. dance to 



recruit the hive-mates that would follow it at the beginning of the next forward pass). 
There existed certain probabilities for these two choices, where bees with higher ob-
jective function value had greater chance to continue their own exploration. Each 
follower bee had chosen a new solution from one of the recruiters by the roulette 
wheel, where better solutions had higher probability of being chosen for exploration. 
After the selection had been made, bees expanded previously generated partial solu-
tions by a predefined number of nodes during the next forward pass, followed by the 
second backward pass and return to the hive. Once in the hive, bees took part in a 
decision making process again, thus repeating the described process. These steps were 
repeated until complete solutions have been generated (for each bee the whole TSP 
tour was discovered). The authors tried to improve the solutions obtained by the bees 
in current iteration by applying different tour improvement algorithms based on k-opt 
procedure. Among all generated solutions, the best one was determined and used to 
update the global best. This represented the end of single iteration and the next one 
started after the hive relocation. 

The authors explored the effectiveness of the BCO on a large number of numerical 
examples. Here we present the results for benchmark problems that were taken from 
the following Internet address:  

http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/tsp/.  
All tests were run on an IBM compatible PC with PIII processor (533MHz). The 

obtained results are given in Table 1.  

Table 1. TSP benchmark problems: The results obtained by the BCO algorithm  

Problem 
name 

No. of 
nodes 

Optimal 
value 

BCO 
Relative 
error (%) 

CPU (sec) 

Eil51     51       428.87       428.87 0.00       29 
Berlin52     52     7544.37     7544.37 0.00         0 
St70     70       677.11       677.11 0.00         7 
Pr76     76 108159.00 108159.00 0.00         2 
Kroa100   100   21285.40   21285.40 0.00       10 
Eil101    101       640.21       640.21 0.00       61 
Tsp225   225     3859.00     3899.90 1.06 11651 
A280   280     2586.77     2608.33 0.83   6270 
Pcb442   442   50783.55   51366.04 1.15   4384 
Pr1002 1002 259066.60 267340.70 3.19 28101 

 
Results given in the Table 1 show that the BCO proposed in [29, 30, 31] produced 
results of a very high quality. The BCO was capable to get the objective function 
values equal or very close to the optimal ones. The CPU times necessary to discover 
the best solutions by the BCO were very low (in 2001). In other words, the BCO was 
able to produce “very good” solutions in a “reasonable amount” of computer time. 



4.2   Solving the Ride-Matching Problem by BCO  

In a lot of countries urban road networks are highly congested. The negative conse-
quences of traffic congestion are enlarged travel times, bigger number of stops, unan-
ticipated delays, greater travel cost, inconvenience to drivers and passengers, in-
creased air pollution, noise level and number of traffic accidents. Growing traffic 
network capacities by building more roads is extremely costly as well as environmen-
tally devastating. Efficient usage of the existing supply is essential in order to sustain 
the growing travel demand. Researchers, planners, and transportation professionals 
have developed various Travel Demand Management (TDM) techniques. One of the 
widely used Travel Demand Management (TDM) techniques is ridesharing. Within 
this concept, two or more persons share vehicle when traveling from their origins to 
the destinations. The operator of the system must posses the following information 
regarding trips planned for the next week: (a) Vehicle capacity (2, 3, or 4 persons); (b) 
Days in the week when person is ready to participate in ride-sharing; (c) Trip origin 
for every day in a week; (d) Trip destination for every day in a week; (e) Desired 
departure and/or arrival time for every day in a week.  

The ride-matching problem considered by Teodorović and Dell’Orco in [48, 49] 
could be defined in the following way: Make routing and scheduling of the vehicles 
and passengers for the whole week in such a way to minimize the total distance trav-
eled by all participants. In [48, 49] the authors developed BCO based model for the 
ride-matching problem. They started their choice model from the assumption that the 
quantities perceived by bees are ‘fuzzy’. They created artificial bees that use approxi-
mate reasoning and rules of fuzzy logic in their communication and acting. The main 
advantage of using the approximate reasoning algorithm for calculating the solution 
component attractiveness was that it made possible to calculate solution component 
attractiveness even if some of the input data were only approximately known. If fi 
denotes the attractiveness value of solution component i, the probability pi for solution 
component i to be added to the partial solution was equal to the ratio of fi and the sum 
of all considered solution component attractiveness values: 
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In order to choose the next solution component to be added to the partial solution, 
artificial bees use a proportional selection known as ‘roulette wheel selection.’ (The 
sections of roulette are in proportion to probabilities pi). In addition to the ‘roulette 
wheel selection,’ several other ways of selection could be used. When adding the 
solution component to the current partial solution during the forward pass, a specific 
bee perceives a specific solution component as ‘less attractive’, ‘attractive’, or ‘very 
attractive’. Artificial bee can perceive a specific attribute as ‘short’, ‘medium’ or 
‘long’; ‘cheap’, ‘medium’, or ‘expensive’; etc. The authors developed the approximate 
reasoning algorithm for calculating the solution component attractiveness. 

In order to describe bee’s partial solutions comparison mechanism, the authors in-
troduced the concept of partial solution badness. The partial solution badness was 
calculated in the following way: 
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where 
Lk – represents the badness of the partial solution discovered by the kth bee; 
L(k) – is the objective function values of the partial solution discovered by the kth bee; 
Lmin and Lmax denote the objective function value of the best and worst partial solution 
discovered from the beginning of the search process. 

The approximate reasoning algorithm to determine bee’s loyalty to its partial solu-
tion contained the rules of the following type: 

 
If the discovered partial solution is BAD 
Then loyalty is LOW 

 
Bees use approximate reasoning, and compare their discovered partial solutions 

with the best, and the worst discovered partial solution from the beginning of the 
search process. In this way, ‘historical facts’ discovered by the all members of the bee 
colony have significant influence on the future search directions. 

Based on the quality of its solution each bee decided with certain probability 
weather to stay loyal or became an uncommitted follower. Every partial solution (par-
tial path) that was being advertised in the dance area had two main attributes: (a) the 
objective function value; and (b) the number of bees that were advertising the partial 
solution (partial path). The number of bees advertising the partial solution was a good 
indicator of a bees’ collective knowledge. It showed how a bee colony perceives spe-
cific partial solutions. The authors used the approximate reasoning algorithm to de-
termine the advertised partial solution attractiveness. It consisted of the rules of the 
following type: 

 
If the length of the advertised path is SHORT 
     and the number of bees advertising the path is SMALL 
Then the advertised partial solution attractiveness is MEDIUM 

 
The approximate reasoning algorithm was used to calculate the number of shifting 

bees with the rules of the following type: 
 
If bees’ loyalty to path pi is LOW 
    and path pj ‘s attractiveness is HIGH 
Then the number of shifting bees from path pi to path pj is HIGH 
 

In this way, the number of bees flying along a specific path is changed before be-
ginning of the new forward pass. Using collective knowledge and sharing information 
among themselves, bees concentrate on more promising search paths, and slowly 
abandon less promising paths. 

Proposed model was tested in the case of ride-sharing demand from Trani, a small 
city in the south-east of Italy, to Bari, the regional capital of Puglia. The authors col-



lected data regarding 97 travelers demanding ride sharing, and assumed, for sake of 
simplicity, that capacity is four passengers for all their cars. Fig.6 shows changes in 
the best-discovered objective function values through the iterations.  

 

 
 

Fig. 6. Changes in the best-discovered objective function values through the iterations 

4.3 Routing and Wavelength Assignment in All-Optical Networks Based by BCO 

The Routing and Wavelength Assignment (RWA) in All-Optical Networks is the well 
known optimization problem in telecommunication. Every pair of nodes in optical 
networks is characterized by a number of requested connections. The total number of 
established connections in the network depends on the routing and wavelength as-
signment procedure. The RWA problem could be described in the following way: 
Assign a path through the network and a wavelength on that path for each considered 
connection between a pair of nodes in such a way to maximize the total number of 
established connections in the network. 

Marković and his coauthors in [33] had successfully solved this problem by the 
BCO meta-heuristic. They proposed the BCO heuristic algorithm tailored for the 
RWA problem. They called the proposed algorithm the BCO-RWA algorithm. The 
authors created the artificial network shown in the Fig.7.  

The node depicted by the square in the Fig.7 represents hive. At the beginning of 
the search process all artificial agents are located in the hive. Bees depart from the 
hive and fly through the artificial network from the left to the right. Bee’s trip is di-
vided into stages. Bee chooses to visit one artificial node at every stage. Each stage 
represents the collection of all considered origin-destination pairs. Each artificial node 
is comprised of an origin and destination linked by a number of routes. Lightpath is a 
route chosen by bee agent. Bee agent’s entire flight is collection of established light-
paths. The authors determined in advance the number of bees B and the number of 
iterations I as a stopping criteria.  

During forward pass every bee visits n stages (bee tries to establish n new light-
paths). That means NC was set to n where n was selected in such a way that n<<m, m 
representing the total number of requested lightpaths. At every stage a bee chooses 
among remaining artificial nodes (not previously selected ones).  Sequence of the n 



visited artificial nodes generated by the bee represents one partial solution of the prob-
lem considered. Bee is not always successful in establishing lightpath when visiting 
artificial node. Bee’s success depends on the wavelengths’ availability on the specific 
links. In this way, generated partial solutions differ among themselves according to the 
total number of established lightpaths.   
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Fig. 7. Artificial network 

Probability p that specific unvisited artificial node will be chosen by the bee equals 
1/nunvis, where nunvis is the total number of unvisited artificial nodes. By visiting spe-
cific artificial node in the network shown in Fig.7 bees attempt to establish the re-
quested lightpath between one real source-destination node pair in optical network. 
Let us assume that the specific bee decided to consider the lightpath request between 
the source node s and the destination node d. In the next step, it is necessary to choose 
the route and to assign an available wavelength along the route between these two real 
nodes. In [33] for every node pair (s, d), the authors defined a subset Rsd of allowed 
routes that could be used when establishing the lightpath. These subsets were defined 
by using the k shortest path algorithm: For every of the k alternative routes the bee’s 
utility when choosing the considered route is calculated. The shorter the chosen route 
and the higher the number of available wavelengths along the route, the higher the 
bee’s utilities are. The authors define the bee’s utilities sd

rV  when choosing the route r 

between the node pair (s, d) in the following way:  
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where: 

r – the route ordinary number for a node pair, r =1, 2,..., k, { }sdr R∈ ; 

hr – the route length expressed in the number of physical hops; 
hrmin – the length of the shortest route rmin ; 
Wr – the number of available wavelengths along the route r; 

{ }max max
sd r

r R
W W

∈
=  – the maximum number of available wavelengths among all 

routes sdr R∈ ; 
a – weight (importance of the criteria), 0 1a≤ ≤ . 

Bees decide to choose a physical route in optical network in a random manner. In-

spired by the Logit model, the authors in [33] assumed that the probability psd
r  of 

choosing route r in the case of origin-destination pair (s, d) equals:  
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where R
sd   is the total number of available routes between pair of nodes (s, d). The 

route r is available if there is at least one available wavelength on all links that belong 
to the route r. 

After forward pass, bees perform backward pass, i.e. they return to the hive. In the 
hive every bee makes the decision about abandoning the created partial solution or 
expanding it in the next forward pass. The authors assumed that every bee can obtain 
the information about partial solution quality created by every other bee. The prob-
ability that the bee b would use the same partial tour that is defined in forward pass u, 
at the beginning of the u + 1 forward pass is calculated in the following way:  

ep u

CbC

b

-max-=  
(7)

where: 
Cb -  the total number of established lightpaths from the beginning of the search 

process by the b-th bee; 
Cmax - the maximal number of established lightpaths from the beginning of the 

search process by any bee; 
u  - ordinary number of forward pass, u = 1,2,... 
Let us discuss Eq. (7) that the authors propose in more details. Better generated 

partial solution (higher Cb value), implies the higher probability that the bee will be 
loyal to the previously discovered partial solution. Greater the ordinary number of the 
forward pass implies higher influence of the already discovered partial solution. This 
is expressed by the term u in the nominator of the exponent (Eq. (7)). In other words, 
at the beginning of the search process bees are “more brave” to search the solution 
space. The more forward passes they make, the bees have less courage to explore the 



solution space. The more we are approaching the end of the search process, the more 
focused the bees are on the already known solutions. 

In [33] the probability pP that the P-th advertised partial solution will be chosen by 
any of the uncommitted follower was calculated using the following relation:   
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where CP is the total number of the established lightpaths in the case of the P-th ad-
vertised partial solution.  

The BCO-RWA algorithm was tested on a few numerical examples. The authors 
formulated corresponding Integer Linear Program (ILP) to determine optimal solu-
tions for the considered examples. They compared the BCO-RWA results with the 
optimal solution. The comparison for the considered network is shown in the Table 2.  

Table 2. The results obtained by comparison of BCO-RWA with ILP  

Number of 
established lightpaths 

CPU time  [s] 
Total number 
of requested 
light-paths 

Number of 
wave-
lengths ILP  BCO-RWA  ILP  BCO-RWA 

Relative 
error 
[%] 

28 

1 
2 
3 
4 

14 
23 
27 
28 

14 
23 
27 
28 

      4 
    94 
  251 
  313 

4.33 
4.58 
4.68 
4.66 

0 
0 
0 
0 

31 

1 
     2 

3 
4 

15 
25 
30 
31 

14 
25 
30 
31 

     4 
    83 
  235 
1410 

4.73 
5.00 
5.19 
5.21 

6.67 
0 
0 
0 

34 

1 
2 
3 
4 

15 
27 
33 
34 

14 
26 
33 
34 

    14 
  148 
  216 
  906 

5.19 
5.50 
5.64 
5.64 

6.67 
3.70 
0 
0 

36 

1 
2 
3 
4 

16 
27 
34 
36 

15 
26 
34 
36 

    23 
  325 
  788 
1484 

5.64 
6.09 
6.11 
6.13 

6.25 
3.70 
0 
0 

38 

1 
2 
3 
4 

17 
28 
35 
38 

16 
27 
35 
38 

    16 
  247 
  261 
1773 

5.67 
6.09 
6.23 
6.33 

5.88 
3.57 
0 
0 

40 

1 
2 
3 
4 

17 
28 
35 
40 

16 
27 
35 
40 

    31 
  491 
  429 
1346 

6.00 
6.28 
6.61 
6.67 

5.88 
3.57 
0 
0 

 



From the results presented in Table 2 it can be concluded that the proposed BCO-
RWA algorithm has been able to produce optimal, or a near-optimal solutions in a 
reasonable amount of computer time.  

4.4   BCO approach to optimize locations of traffic sensors on highways 

The problem of the placement of point detectors within a roadway network belongs 
to the field of location theory. Point detectors are deployed on roadways to collect 
traffic data including volume, occupancy, and speed. The data is used by Traffic Man-
agement Centers in cities to manage traffic and incidents and provide information to 
motorists about current conditions. The spacing of detectors on freeways has a key 
impact on the travel time estimates obtained from the reported speeds. There is a tra-
deoff between detector spacing and travel time estimate correctness. As detectors 
become more closely spaced, the data obtained from them more closely look like 
continuous data available from probes. This additional accuracy also comes with 
much higher capital and ongoing costs, as all detectors require regular maintenance to 
continue to report good data. Transportation agencies are therefore seeking a method 
to indicate the most appropriate locations for detector deployment such that the travel 
time estimate error is minimized, within the constraints of available capital and main-
tenance funding.   

Edara et al. in [20, 44] studied the problem of optimal placing traffic detectors on 
freeways and developed the BCO algorithm to solve it. The proposed model tries to 
minimize the error in travel time estimation, while taking into account the constraints 
of available capital and maintenance funding.  

During the forward pass of the BCO algorithm the Logit model [34] was used 
for selection of the potential detector locations (NC was equal to one). The probability 
of a bee choosing a node i was expressed using the Logit model as follows: 
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where Ui represented the utility of having a detector at node i. This utility depended 
on several factors that may affect travel time estimates. Factors such as the presence of 
a natural bottleneck at that location (e.g. a lane reduction) that leads to recurring 
congestion during the peak traffic periods, historical accident likelihoods (to monitor 
the induced delays by deploying detectors), level of traffic volumes, etc, can be used 
to determine the utilities. In [20, 44], it was assumed that all potential detector 
locations have equal utilities. Within each forward pass a bee visited a certain number 
of nodes and created a partial solution (choose few nodes that become detector loca-
tions).  

Each generated partial solution in [20, 44] was characterized by the travel time 
estimation error. As the criteria for comparison of partial solutions, the maximum 
travel time error over all travel time runs was selected. By Eb the authors denoted the 



maximum travel time error over all travel time runs in the case of the partial solution 
created by the b-th bee. It was normalized by the following formula: 
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having that: 

bO - was normalized value of the maximum travel time error over all travel time runs 

for the partial solution created by the b-th bee 

maxE , minE - represented maximum and minimum travel time error value over all 

partial solutions generated so far. 
The probability that b-th bee (at the beginning of the new forward pass) is loyal to 

its previously discovered partial solution was expressed as follows:  

Bbep u
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u
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where u represented the ordinary number of the forward pass (e.g., u=1 for first for-
ward pass, u=2 for second forward pass). 

A bee that does not want to expand its previously generated partial solution would 
go to the dancing area of the hive to find another bee(s) to follow. The probability that 
b’s partial solution would be chosen by any uncommitted bee in [20, 44] was equal to: 
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where: 
Ok  - objective function value of the k-th advertised solution; 

R - the number of  recruiters. 
The proposed BCO algorithm was tested on a real-world freeway segment in Vir-

ginia. One of the main purposes of developing proposed methodology was to generate 
tradeoff plots between the travel time error and the number of detectors which would 
give the optimal placement of detectors for different levels of available funding.  

Tradeoff plots were generated by varying the actual number of detectors (d) from 2 
to 20 in increments of 1. Results of the BCO runs from [44] are shown in Fig.8. For a 
given number of detectors, the obtained optimal placement would result in a travel 
time estimation error for each travel time run. The maximum error versus the detector 
deployment obtained by the Genetic algorithms (GA) is also plotted in Fig.8.  

These results enablled savings of 30% as compared to the current deployment at 20 
locations. The obtained results were very competitive when compared with the results 
of Genetic Algorithms achieved in previous study.  

The developed method is intended for use at a planning level, to assist in determin-
ing where to deploy detectors in an area that currently has few or no detectors, or in 
determining which detectors need to be (or those that need not be) regularly main-
tained to obtain good travel time estimates in areas with dense detector deployment.  
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Fig. 8. Maximum Travel Time Estimation Error Plot (BCO vs GA) 

4.5   Scheduling Independent Tasks by BCO and Parallel BCO 

Davidović et al. [17, 18] applied BCO to the problem of static scheduling of inde-
pendent tasks on identical machines. The problem can be described as follows. Let 

{ }nT ,...,2,1=  be a given set of independent tasks, and { }mP ,...2,1=  set of identical 
machines. The processing time of task i (i = 1,2,…,n) is denoted by l i. All tasks are 
mutually independent and each task can be scheduled to any machine. All given tasks 
should be executed. Task should be scheduled to exactly one machine and machines 
can execute one task at a time. The goal is to find scheduling of tasks to machines in 
such a way as to minimize the completion time of all tasks (the so called makespan).  

At each iteration of its execution BCO performs constructive steps composed of 
forward and backward passes and within them generates B solutions (schedules), one 
schedule for each bee. Within each forward pass every artificial bee is allowed to fly 
out from the hive and to generate NC task-machine pairs. The probability that specific 
bee chooses task I, denoted by pi was calculated as follows:  
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where: 

l i – is the processing time of the i-th task; 

K – represents the number of  “free” tasks (not previously chosen). 
Obviously, tasks with longer processing times have higher chances to be chosen. 

The probability pj of choosing machine j by any bee equals:  
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where: 
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Fj - running time of machine j based on tasks already scheduled to it; 
max F, min F - maximum and minimum over all machines running times.   
Machines with a lower value of the running times have a higher chance to be 

chosen. In total, B bees choose B*NC  task-machine pairs within each forward pass. 
After scheduling tasks to machines the corresponding machines’ running times were 
updated.   

After the completion of forward pass, all bees return to the hive and backward pass 
starts. Bees exchange information about the quality of the partial solutions generated. 
The latest time point of finishing the last task at any machine characterizes each gen-
erated partial solution. Upon obtaining full information about all partial solutions 
generated by all bees, every bee decides whether to abandon the food source and be-
come again uncommitted follower, or dance and thus recruit the hive-mates before 
flying again from the hive and thus beginning the new forward pass. Forward and 
backward passes alternate until all bees generate the whole schedules. 

If Cb (b=1, 2,..., B)  denotes the latest time point of finishing the last task at any 
machine in the partial solution generated by the b-th bee, then Ob, the normalized val-
ue of the time point Cb, was calculated in [17, 18] in the following way:  
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where Cmin and Cmax are respectively the smallest and the largest time point among all 
time points produced by all bees. The probability that b-th bee (at the beginning of the 
new forward pass) is loyal to the previously discovered partial solution is calculated in 
this paper in the following way:   

Bbep u
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where u is the ordinary number of the forward pass.  
Ones the bee decided to stay loyal to its own partial solution, it is automatically be-

coming a recruiter, i.e. its solution is considered to be selected by any uncommitted 
bee (Fig. 9). The authors have assumed in [17, 18] that the probability the recruiter b’s 
partial solution will be chosen by any uncommitted bee equals:  
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where: 
Ok  - objective function value of the k-th advertised solution; 

R - the number of  recruiters. 
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Fig. 9. Comparison of partial solutions after third forward pass, NC=1. 

Using Eq. (18) and a random number generator, every uncommitted follower join 
one bee dancer (recruiter). Recruiters fly together with a recruted hive-mates in the 
next forward pass along the path discovered by the recruiter. At the end of this path all 
bees are free to independently search the solution space. 

The proposed algorithm was tested on a various benchmark problems. Preliminary 
results were presented in [17], while the exhaustive experimental evaluations are de-
scribed in [18]. The problem parameters range from instances with n = 100 up to the 
instances with n = 5000 and from p = 4 to p = 100. The BCO parameters were B = 5, 
NC = 10. The stopping criterion was the number of iterations and was equal to 100.  

The authors compared the obtained BCO results with the optimal solution obtained 
by using ILOG AMPL and CPLEX 11.2 optimization software. The comparison re-
sults are illustrated in the Table 3. Within this table, the number of machines, m, is 
given in the first column, OPT denotes the optimal makespan, OPT Time is the value 
of CPU time required by CPLEX for solving the corresponding problem example to 
optimality. BCO represents objective function value obtained by the BCO algorithm; 
BCO error denotes deviation of BCO solution from the optimum one, BCO time 
shows the time required by BCO algorithm to obtain its final solution. The BCO algo-
rithm was able to obtain the optimal value of objective function in most of the test 
problems. The CPU times required to find the best solutions by the BCO were negli-



gible. All tests were performed on Intel Core 2 Duo CPU E6750 on 2.66GHz with 
RAM=8 Gb under Linux Slackware 12, Kernel: 2.6.21.5, gcc version 4.1.2. 

Table 3. The comparison of the BCO results the optimal ones for n=5000 

m OPT OPT 
Time (sec) 

BCO BCO 
error % 

BCO 
time (sec) 

   4 6844 1.112 6844 0.000 0.070 
    8 3422 6.113 3422 0.000 0.209 
  16 1711 9.786 1711 0.000 0.217 
25 1095 30.288 1095 0.000 0.226 

  50   548 28.561 548 0.000 0.251 
 100   274 1130.310 277 1.095 0.560 
 
Parallel BCO. The above described implementation represented good starting 

point for testing parallelization strategies of BCO method. In [16] two synchronous 
parallelization strategies of BCO were proposed. The parallel BCO search was im-
plemented on distributed memory IBM HPC Linux Cluster Server+16Η2 Dual Core 
Intel Processors on 2.33GHz/1333MHz with 4MB RAM, Ethernet 3rd Party e1350 
SMC 8848M Switch Bundle. The C programming language with MPI communication 
library was used. 

The proposed parallelization strategies were tested on a various problem instances, 
the same one that have been used in [18]. It allowed authors to easily compare sequen-
tial and parallel BCO versions and measurement of the performance for various paral-
lelization strategies. The representative subset of test examples has been chosen, 
namely the hard test instances from [15] with a priori known optimal solutions and the 
largest size examples from [52] that require a significant CPU time to be solved. 

The target architecture for parallelized BCO in [16] was homogeneous completely 
connected network of processors. One of them is responsible for the communication 
with user and is named master. It is usually marked as processor 0. The other q-1 
processors are called working processors or slaves. Their marks are processor 1 up to 
processor q-1. Parallel versions of BCO are executing on all q processors, i.e. compu-
tations are assigned to master too. Completely connected topology containing q=5 
processors is shown on Fig. 10. In the experiments presented in [16] the number of 
processors was changing from 2 to 12. 
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Fig. 10. Complete interconnection network of q = 5 processors 
We present here some of the results for coarse grained parallelization strategy 

DBCO and for the other cases we just rewrite conclusions. 
The results of scheduling one of the largest size examples from [52] (with 5000 

tasks) on different number of machines are given in Table 4. These instances were not 
too hard to be solved by sequential BCO, and even they were solvable to optimality by 
CPLEX within a reasonable CPU time. For all examples, within DBCO parameter 
settings were the following: B=5, NC=10 and stopping criterion 1000 iterations. 

Table 4. The comparison of the sequential and parallel BCO, results for n=5000 

 
m 

 
q 

 
OPT 

 
DBCO 

DBCO 
time (sec) 

 
Sq 

 
Eq 

4 1 
2 
3 
4 
5 

6844 6844 
6844 
6844 
6844 
6844 

60.04 
31.83 
21.36 
15.99 
12.76 

1.00 
1.89 
2.81 
3.75 
4.71 

1.00 
0.94 
0.94 
0.94 
0.94 

    8 1 
2 
3 
4 
5 

3422 3422 
3422 
3422 
3422 
3422 

61.94 
32.70 
21.86 
16.34 
13.07 

1.00 
1.89 
2.83 
3.79 
4.74 

1.00 
0.94 
0.94 
0.95 
0.95 

  16 1 
2 
3 
4 
5 

1711 1711 
1711 
1711 
1711 
1711 

65.65 
34.77 
23.20 
17.38 
13.89 

1.00 
1.89 
2.83 
3.78 
4.73 

1.00 
0.94 
0.94 
0.94 
0.95 

25 1 
2 
3 
4 
5 

1095 1095 
1095 
1095 
1095 
1095 

69.75 
37.12 
24.76 
18.50 
14.12 

1.00 
1.88 
2.82 
3.77 
4.70 

1.00 
0.94 
0.94 
0.94 
0.94 

  50 1 
2 
3 
4 
5 

  548 548 
548 
548 
548 
548 

81.03 
43.51 
29.04 
21.73 
17.41 

1.00 
1.86 
2.79 
3.73 
4.65 

1.00 
0.93 
0.93 
0.93 
0.93 

   100 1 
2 
3 
4 
5 

  274 277 
277 
277 
277 
277 

104.46 
 65.39 
 37.54 
 28.21 
 22.56 

1.00 
1.85 
2.78 
3.70 
4.63 

1.00 
0.93 
0.93 
0.93 
0.93 

 
The first column of the Table 4 contains the number m of machines within each ex-

ample. The number of parallel processors q executing DBCO is given in the second 



column of our tables. Optimal schedule length represents the content of column three, 
while lengths of schedules obtained by DBCO for different q are placed in the next 
column. Column five in both tables contains CPU time required by DBCO to com-
plete 1000 iterations, actually the CPU time required by q processor to complete 
1000/q iterations. The corresponding speedup Sq and efficiency Eq are given in the last 
two columns. It is important to note that the CPU time required by DBCO to complete 
all necessary computations is actually the CPU time of the processor that is the last 
one to finish its work, i.e. it is equal to the maximum of all processors' running times. 
Actually, in the resulting tables we put the best obtained schedule length and the long-
est required CPU time. 

Since for the calculation of the speedup and efficiency, “the best sequential algo-
rithm” is required, in [16] it was assumed that BCO from [17, 18] can take the role of 
the best sequential algorithm. To assure fairness of obtained results, parallel versions 
of BCO were compared with the original sequential one executed on a single proces-
sor of given parallel architecture (instead of parallel version executed for q=1). 

As can be seen from the results presented in Table 4 DBCO applied to those exam-
ples shows very good performance, almost linear speedup and above 90% efficiency, 
and also the stability in the solution quality (there is no degradation in parallel execu-
tion). In some other examples parallelization, solution quality was changing, the au-
thors reported improvements or degradations of the solution quality for less than 3%.  

When testing BBCO the authors obtained excellent (superlinar) speedup and effi-
ciency, due to the reduction of computations assigned to each processor. On the other 
hand, FBCO resulted in slowing down the computations due to the communication 
delays caused by intensive data exchange between processors. This strategy is obvi-
ously more suitable for shared memory multiprocessor systems. 

5   Conclusion 

The Bee Colony Optimization, one of the newer Swarm Intelligence technique, is a 
meta-heuristic inspired by the foraging behavior of honeybees. It represents a general 
algorithmic framework applicable to various optimization problems in management, 
engineering, and control, and it should always be tailored for a specific problem. The 
BCO method is based on the concept of cooperation, which increases the efficiency of 
artificial bees and allows achievement of goals that could not be reached individually. 
The BCO has the capability, through the information exchange and recruiting process, 
to intensify the search in the promising regions of the solution space. When it is neces-
sary, the BCO can also diversify the search. Recruited bees "fly together" with the 
recruiter along the path already generated by the recruiter. This means that partial 
solution generated by the recruiter is associated (copied) to recruited bees also. When 
they reach the end of the path, they are free to make an individual decision about the 
next constructive step to be made. The freedom to make an individual decision consti-
tutes a diversifying element that complements the search intensification in the promis-
ing regions.  



The BCO has already been successfully applied to several combinatorial optimiza-
tion problems, and we hope that expanded application reports are to come soon. 
Moreover, the suitability for parallelization of the BCO algorithm opens not only a 
new research direction but also some new potential applications. However, the BCO 
has not been widely used for solving real-life problems and theoretical results support-
ing BCO concepts are still missing. This work is necessary in the future research. 
Based on the achieved results and gained experience, new models founded on BCO 
principles (autonomy, distributed functioning, self-organizing) are likely to signifi-
cantly contribute to solving complex engineering, management, and control problems. 
Yet, the most important direction of the future research is the mathematical validation 
of the BCO approach. In years to come, the authors expect more BCO based models, 
examining, for instance, bees’ homogeneity (homogenous vs. heterogeneous artificial 
bees), various information sharing mechanisms, and various collaboration mecha-
nisms.   
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