Bee Colony Optimization Overview

Du$an Teodoro¥i’, Tatjana Davidow and Milica Selm *

1 University of Belgrade, Faculty of Transport andflic Engineering,
Vojvode Stepe 305, 11000 Belgrade, Serbia
{dusan, m sel m c} @&f.bg.ac.rs
2 Mathematical Institute, Serbian Academy of Scisraed Arts,
Kneza Mihaila 36, P.O.Box 367, 11000 Belgrade, Berb
tanj ad@r . sanu.ac.rs

Abstract. The Bee Colony Optimization (BCO) meta-heuristgddmgs to the
class of Nature-Inspired Algorithms. This techniquses an analogy between
the way in which bees in nature search for a faod, the way in which optimi-
zation algorithms search for an optimum in comhanat optimization prob-
lems. Artificial bees represent agents, which dmlatively solve complex
combinatorial optimization problem. The chaptersergs a description of the
algorithm, classification and analysis of the resakchieved using Bee Colony
Optimization (BCO) to model complex engineering amehagement processes.

1 Introduction

The Bee Colony Optimization (BCO) meta-heuristi®,[30, 31, 32] belongs to the
class ofNature-Inspired AlgorithmsThese algorithms are inspired by various bio-
logical and natural processes. Natural systems baseme important sources of ideas
and models for development of various artificialtegss. The popularity of the Na-
ture-Inspired Algorithms is mainly caused by theatality of biological systems to
successfully adjust to continually varying enviramh Neural networks, evolutionary
computation, ant colony optimization, particle smawptimization, artificial immune
systems, and bacteria foraging algorithm are sointieecalgorithms and concepts that
were inspired by nature.

Individuals in various biological systems are ergghg cooperation, collaboration,
information exchange, and/or conflicts. In manyesasndividuals, that are autono-
mous in their decision-making, work together witthey individuals in order to
achieve specific objective. Natural phenomena tectis that simple individual organ-
isms can create systems able to perform highly éexrtpsks by interacting with each
other.

Few algorithms inspired by bees’ behavior appeahatihg the last decade (Bee
System, BCO algorithm, ABC algorithm, MBO, Bees &ighm, HBMO algorithm,
BeeHive, VBA algorithm) [1, 2, 4, 11, 19, 21, 23,25, 26, 28, 35, 36, 37, 38, 40,
41, 42, 43, 55, 56, 57, 58, 59, 60]. Yonezava aiildi¢hi [60] analyzed collective
intelligence based on bees’ behavior. Sato and wagi [43] proposed modified
genetic algorithm named Bee System. In essencealdprithm belongs to the class of



genetic algorithms. Abbas [1] develop®tBO model that is based on the marriage
process in honeybeeBeeHive[55, 56, 57],Artificial Bee Colony(ABC) algorithm
[23, 24, 25] andBees Algorithn{36, 37, 38] are based on foraging behavior in-hon
eybees but all of them use different concepts ligorathm development. An excellent
survey of the Bees’ behavior inspired algorithmaldde found in Baykasoglu et al.
[3].

The BCO meta-heuristic [29, 30, 31, 38]s been proposed quite recently byitu
and Teodorovi. The BCO is inspired by foraging behavior in hdvesss. (Ldi¢ and
Teodorové used the term “Bee System” in their first pap@f)e basic plan behind
the BCO is to build the multi agent system (colofrtificial bees) able to efficiently
solve hard combinatorial optimization problems. Tdréficial bee colony behaves
partially similar, and partially in a different wépom bee colonies in nature.

The BCO meta-heuristic has been recently usedt@ltfar solving large and com-
plex real-world problems. It has been shown thatBEO poses an ability to find high
quality solutions of difficult combinatorial probtes within a reasonable amount of
computer time. The BCO is a stochastic, randomesetgchnique. This technique
uses an analogy between the way in which beesturenaearch for a food, and the
way in which optimization algorithms search for gtimum of (given) combinatorial
optimization problems. The basic idea behind theOB€ to build the multi agent
system (colony of artificial bees) able to effeetivsolve difficult combinatorial op-
timization problems. Artificial bees investigatedhgh the search space looking for
the feasible solutions. In order to find better Aetter solutions, autonomous artificial
bees collaborate and exchange information. Usitigative knowledge and sharing
information among themselves, artificial bees cotrege on more promising areas,
and slowly abandon solutions from the less promigireas. Step by step, artificial
bees collectively generate and/or improve theintsmhs. The BCO search is running
in iterations until some predefined stopping ciéés satisfied.

The BCO works in a self-organized and decentralizag and therefore represents
a good basis for parallelization. It also poseslitity to keep away from becoming
trapped in local minima.

This chapter presents a description of the BCO smde of its modifications, as
well as the classification and analysis of the ltssachieved using BCO to model
complex engineering and management processes. ithdiyirportray the behavior of
bees’ in nature, and then we describe a generald®deny Optimization algorithm.
Afterwards, we present some modifications of BC@x #ilow its application to some
non-standard combinatorial optimization problemetel on, we describe BCO appli-
cations in different engineering and managemenblpros. The BCO has been suc-
cessfully applied to various engineering and mamege problems by Teodora@vi
and coauthors [16, 17, 18, 20, 33, 44, 45, 4648749, 50, 51]. The BCO has been
applied in the cases of the Traveling Salesman |@m{29, 30, 31], the Ride-
Matching Problem [48, 49], the Routing and Wavetangssignment (RWA) in All-
Optical Networks [33], thgp-median problem [51], static scheduling of indeparid
tasks on homogeneous multiprocessor systems [17a48 traffic sensors locations
problem orhighways [20, 44].



2 Biological Background

Swarm behavior (fish schools, flocks of birds, &edds of land animals) is based on
the biological need=f individuals to stay together. When staying tbge, individu-
als have a higher probability to stay alive, sipredator usually attacks only one
individual. Flocks of birds, herds of animals, digh schools are characterized by
collective movement. Herds of animals react at olmcehanges in the course and
speed of their neighbors.

Colonies of various social insects (bees, wasps, &rmites) are also character-
ized by swarm behavior. Swarm behavior is primadharacterized by autonomy,
distributed functioning and self-organizing. Thentounication systems between
individual insects contribute to the pattern caltbd “collective intelligence” of the
social insect colonies. The term “Swarm Intelligehy that denotes this “collective
intelligence”, has been introduced in [5, 6, 7, 8].

Swarm Intelligence [8] is the branch of Artificildtelligence. Swarm Intelligence
is based on investigation of actions of individualgifferent decentralized systems.
These decentralized systems (Multi Agent Systems)camposed of physical indi-
viduals (robots, for example) or “virtual” (artifad) ones that communicate among
themselves, cooperate, collaborate, exchange iatiwmand knowledge and perform
some tasks in their environment. When designing r@wintelligence models, re-
searchers use some principles of the natural swaetiigence. The development of
artificial systems usually does not involve the rentinitation of natural systems, but
explores them while searching for ideas and models.

As we already mentioned, the BCO is inspired bwpdarg behavior of honeybees.
Bees in nature look for a food by exploring thddiein the neighborhood of their
hive. They collect and accumulate food for lates by other bees. Typically, in the
initial step, some scouts search the region. Cainglehe search, scout bees will
return to the hive and inform their hive-mates aliba locations, quantity and quality
of available food sources in the areas they haamn@ed. In case they have discov-
ered nectar in the previously investigated locatj@stout bees will dance in the so-
called “dance floor area” of the hive, in an atténgp“advertise” food locations and
encourage the remaining members of the colonyltowaheir lead. The information
about the food quantity is presented using a ritadled a “waggle dance”. If a bee
decides to leave the hive to collect nectar, it feilow one of the dancing scout bees
to the previously discovered patch of flowers. Ugorival, the foraging bee takes a
load of nectar and returns to the hive relinquighiine nectar to a food storer bee.
Several scenarios are then possible for a foralgesy (1) it can abandon the food
location and return to its role of an uncommittetiofver; (2) it can continue with the
foraging behavior at the discovered nectar soundout recruiting the rest of the
colony; (3) it can recruit its hive-mates with tlance ritual before the return to the
food location. The bee opts for one of the aboter@étives with a certain probabil-
ity. The described process continues repeatedlile wie bees at a hive accumulate
nectar and explore new areas with potential foagrcas. As several bees may be
attempting to recruit their hive-mates at the dafhcer area at the same time, it is
unclear how a bee resting at a hive decides whicttidg bee to follow, although it



has been considered that “the recruitment among isedways a function of the qual-
ity of the food source” [10].

3 Bee Colony Optimization (BCO) Algorithm

The BCO belongs to the class of population-basgdrighms. It has been proposed
for the first time in [29, 30, 31] and was evolvitigough later applications. The early
versions of the algorithm were imitating the bebawf the bees in the nature to a
larger extent. These versions were characterizeithddgcoutbees, an important role
of the hive location, and recruiting process tisatbre like the natural one than it is
the case in the current version of the algorithmthis section we describe in details
the current version and we will point out the diffieces while presenting the concrete
applications.

Population of agents (artificial bees) consistifigddbees collaboratively searches
for the optimal solution. Every artificial bee gemtes one solution to the problem.
There are two alternating phasésnfard passandbackward pagsconstituting single
step in the BCO algorithm. In each forward pasgrg\artificial bee explores the
search space. It applies a predefined number ofemowhich construct and/or im-
prove the solution, yielding to a new solution. Baample, let bees Bee 1, Bee 2, ...,
Bee B participate in the decision-making processnoentities. At each forward pass
bees are supposed to select one entity. The pesstbhation after third forward pass
is illustrated on Fig.1.
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Fig. 1. An illustration of the third forward pass

Having obtained new partial solutions, the beesagain to the hive and start the
second phase, the so-called backward pass. Indtlevard pass, all artificial bees
share information about the quality of their sauos. In nature, bees would return to
the hive, perform a dancing ritual, which wouldomh other bees about the amount of



food they have discovered, and the proximity of plagch to the hive. In the search
algorithm, the bees announce the quality of thet&wi, i.e. the value of objective
function is computed. Having all solutions evaldatevery bee decides with a certain
probability whether it will stay loyal to its solah or not. The bees with better solu-
tions have more chances to keep and advertise gbkitions. On the contrary to the
bees in nature, artificial bees that éogal to their partial solutions are at the same
time recruiters i.e. their solutions would be considered by othees. Once the solu-
tion is abandoned by a bee it becomesommittechnd has to select one of the adver-
tised solutions. This decision is taken with a bty too, so that better advertised
solutions have bigger opportunity to be choserfddher exploration. In such a way,
within each backward pass all bees are divided twm groups R recruiters, and
remainingB-R uncommitted bees) as it is shown on Fig. 2. VafoeR andB-R are
changing from one backward pass to another one.

<‘> Recruiters
é Uncommitte

Fig. 2. Recruiting of uncommitted followers

After comparing all generated partial solutionsgB from the previous example
decided to abandon already generated solutioncjuiint BeeB (see Fig.3).
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Fig. 3. The possible result of a recruiting process withird backward pass



Bee 2 and Be8 "fly together" along the path already generatedHeyBeeB. In
practice, this means that partial solution generateBeeB is associated (copied) to
Bee 2 also. When they reach the end of that compadim, they are free to make an
individual decision about the next constructivepsie be made. The Bee 1 will keep
already generated partial solution without beingsem by any of the uncommitted
hive-mates, and therefore, it will perform new domdtive step independently. The
described situation is illustrated on Fig.4.
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Fig. 4. An example of partial solutions after fourth forda

The two phases of the search algorithm, forwardtzawkward pass, are alternating
in order to generate all required feasible sol#ifmme for each bee). When all solu-
tions are completed the best one is determinésluged to update global best solution
and an iteration of the BCO is accomplished. A$ ghoint allB solutions are deleted,
and the new iteration could start. The BCO runsaiten by iteration until a stopping
condition is met. The possible stopping conditioonsld be, for example, the maxi-
mum total number of forward/backward passes, thgirman total number of for-
ward/backward passes without the improvement ofothjective function, maximum
allowed CPU time, etc. At the end, the best founldt®n (the so called global best)
is reported as the final one.

The algorithm parameters whose values need to therige the algorithm execu-
tion are as follows:

B - The number of bees in the hive;
NC - The number of constructive moves during one &rdapass.

At the beginning of the search, all the bees arénhive. According to the main
idea in the current version of the BCO algorithhe hive is an artificial object, with-
out precise location and does not influence therilyn execution. It is used only to
denote the synchronization points at which beesatbanging information about the



current state of the search. The pseudocode d@@ algorithm could be described
in the following way:

1. Initialization: an empty solution is assigned t@evbee;
2. For every bee: // the forward pass
i. Setk = 1; //counter for constructive moves in the fard/pass;
ii. Evaluate all possible constructive moves;
iii. According to evaluation, choose one move ushmgroulette wheel;
iv. k=k+ 1; If k< NC Goto step .
3. All bees are back to the hive; // backward passssta
4.  Evaluate (partial) objective function value for bdee;

5.  Every bee decides randomly whether to continuevits exploration and be-
come a recruiter, or to become a follower;

6.  For every follower, choose a new solution from oéers by the roulette
wheel,

7.  If solutions are not completésoto step 2;

8. Evaluate all solutions and find the best one;

9.  If the stopping condition is not m&oto step 2;

10. Output the best solution found.

3.1 Constructive and Improving Alternatives of the BCO Algorithms

Until now, the BCO algorithms in the literature balieen constructive. The BCO
starts from scratch and, for each bee, construstdution step by step applying some
stochastic problem specific heuristics. Randomiredgced by these stochastic con-
struction processes assures diversity of the sedlvithin each iteratiorB solutions
are generated and the best of them is used fortingdde current global best solu-
tion. Next iteration then results Binew solutions among which we search for the new
global best one.

The BCO could also work as an improving algoritim.this case, the analyst
would start from a complete solution. The compkttution could be generated ran-
domly or by some heuristics. By perturbing thausioh, artificial bees would try to
improve it. Todorow et al. in [53] developed a bee colony approachttier nurse
rostering problem. Their approach is the first dn&t allows both constructive and
improving steps to be applied and combined togeffiee developed algorithm was
designed to be a combination of constructive andlleearch phases. In the construc-
tive phase, unscheduled shifts are assigned tdahlainurses. A local search move
could be applied to both partial and complete rsstits role was to modify a roster
either by swapping assignments of nurses, or bgsigaing a shift to another nurse.



The proposed approach also incorporated a nowdligant discarding of portions of
large neighborhoods for which it is predicted ttray will not lead to the improve-
ment of the objective function. The performanceaha algorithm was evaluated on
real world data from hospitals in Belgium.

The idea of improving alternatives could be devetbpm many different ways, and
this approach certainly may be very useful for sguifficult combinatorial optimi-
zation problems.

3.2 TheArtificial Beesand Fuzzy Logic

In most of the models it is assumed that probleta @zosts, capacity, distance, dura-
tion etc.) aredeterministicquantities known in advance. On the other hareltréwvel
time between two nodes in a network, for exampigolves an uncertainty due to
traffic conditions, type of driving, weather condits, choice of streets, and so on.
Our subjective feeling regarding travel time iseofhot very precise. For example, the
estimate is made that it takes “approximately 3@utds” to go from one node to
another. No one will claim that it takes 27 minutd®en subjectively estimating travel
time. Estimating travel time in this way is not ttesult of objective measurements but
is a subjective estimation that differs among dsgveTravel time has often been
treated as aandom variable and this treatment required travel time measunésne
and the establishment of a certain probability derignction. However, dispatchers-
decision makers most often make a subjective ewimftravel time based on their
experience and intuition, expressing the estimatedel time as “short,” “long,”
“about 20 minutes,” and so on. Travel time betwgen nodes in a network can be
treated aguzzy number(Most sets in reality have no sharp line betwibenelements
in the set and those outside the set. The simplestples of fuzzy sets are classes of
elements characterized by adjectivbiy, small, fast, oldetc. With fuzzy sets the
membership function is associated and it takesimootis values from the closed

interval [0,l]. Fuzzy sef is defined as a set of ordered pa\rs {X,,UA(X)} where

4 A(X) indicates the grade of membership of elemxantsetA [61]. For example, ik

is the travel time between two nodes, tis#ort could be considered as a particular
value of the fuzzy variablgavel time.To eachx a numberu 5(x) e [0,1] is assigned.

This number shows the extent to whicts considered to be short.).

The fuzzy set of subjectively estimated travel tibegween nodesandj is de-
noted byT. In order to simplify the arithmetic operationse travel timeT is assumed
to be a triangular fuzzy number. Triangular fuzeynberT is expressed as:

T = (tt0t3) (1)

wherety, t,, andt; are the lower boundary, the value that corresptéodbe highest
grade of membership, and the upper boundary of/fommberT, respectivel\j27].

The BCO application on models with fuzzy logic imast the same as application
on deterministic models. Main differences are & plart when:

- bees’ partial solutions are compared,;

- different component attractiveness is calculated.



In the first case, Kaufmann and Gupta's method ¢2n] be used to compare fuzzy
numbers. In the second case, the approximate riegsalgorithm for calculating the
solution component attractiveness could be appliétds algorithm is usually com-
posed from the rules of the following type (Fig: 5)

If the attributes of the solution component are VERYOD
Then the considered solution component is VERY ATTRARCEI

A
less attractive  attractive  very attrative

Fig. 5. Fuzzy sets describing attractiveness

The approximate reasoning based on Fuzzy Logidkas used in [32] to model
uncertain demands in nodes when solving vehiclémguwroblem and in [48, 49] to
model some uncertain quantities for solving Ridetéfiang problem.

3.3 Parallelization of Bee Colony Optimization

The BCO algorithm created as a multi agent systemwigles a good basis for the
parallelization on different levels. It seems tovénasignificant amount of inherent
parallelism. Therefore, studying the potential tetgées for its parallelization, repre-
sent fruitful research field. As of the authors'okriedge, the only paper proposing
strategies for parallelization of the BCO is [18].this subsection we will describe
those and discuss some other potential paralleizatrategies of BCO. First we give
short description of specific points in paralletiva of meta-heuristics (stochastic
search algorithms for combinatorial optimizatio@py overview of parallel meta-
heuristic classification and taxonomy, and thendescribe parallelization of BCO
based on the synchronous strategy.

The main goal of parallelization of any algorithento speedup the computations
needed to solve a particular problem by engagingra¢ processors and divide the
total amount of work between them. For stochadtiordhms this goal may be de-
fined in one of the following two ways: 1) accelershe search for the same quality
solution or 2) improve the solution quality by aliag more processors to run the
same amount of (CPU or wall-clock) time as the Isingne does. When meta-
heuristics are in consideration, the combinatiorgains may be obtained: parallel
execution can enable efficient search of differegiions of the solution space yield-
ing to the improvement of the final solution quahitithin smaller amount of execu-
tion time.



A significant amount of work has already been doneparallelization of meta-
heuristics. The approach can be twofold. The th@mleaspects of parallelization
could be considered, and practical applicationgavéllel meta-heuristics to different
optimization problems proposed. Different paraflation strategies had been pro-
posed in the recent literature dealing with varimeta-heuristic methods [13, 22, 39].
The survey papers [12, 54] summarize these wortparpose adequate taxonomy.

One of the first classifications of parallelizatistnategies was proposed in [54]. It
is based on the control of the search processesudts in two main groups of paral-
lelization strategiessingle walkandmultiple walksparallelism.Single walkparalleli-
zation assumes that the unique search trajectaygrisrated and only required com-
putations are performed in parallel. It is connddtethe fine granularity of tasks to be
executed in parallel and usually, it is devotegdpgeedup the execution without affect-
ing the final solution quality.

Multiple walks parallelization strategy involves different seatchjectories ex-
plored by different processors. It assumes medmuweoarse granulation of tasks and
they could be executed independently or in coopmrafThe simplest example of
multiple walks parallel search is independent s the parallel simulation of the
multistart execution and it does not involve infation exchange during the search.
Cooperative execution assumes data exchange dtivingearch which affects the
search trajectory on each processor.

To refine the classification of parallelizationat&gies, one has to consider com-
munication aspects (synchronous or asynchronous)saarch parameters (same or
different initial point and/or same or differentaseh strategies). The resulting classifi-
cation is described in details in [12].

As we already mentioned, the BCO algorithm creasda multi agent system,
provides a good basis for the parallelization dfedgnt levels. High level paralleliza-
tion assumes coarse granulation of tasks and caappked to iterations of BCO.
Smaller parts of BCO algorithms (forward and baadlkdyaasses within a single itera-
tion) also contain a lot of independent executiang are suitable for low level paral-
lelization. In [16] the authors considered botfatggies in a synchronous way.

High level parallelization in its simplest form regents the independent execution
of BCO on different processors. It could be obtdibg the division of stopping crite-
ria among processors. For example, if the stoppiitgria is allowed CPU time (giv-
en as auntimevalue in seconds), the BCO could run in paralkefjgprocessors for
runtimegqg seconds. Similar rule can be introduced in the edgen stopping criteria is
allowed number of iterations. In both cases eadtgssor performs independently
sequential variant of BCO, but with reduced valdettee stopping criteria. This
variant of parallelized BCO was namditributed BCO(DBCO). Other way to im-
plement coarse grained parallelization strategydcbe the following: Instead of the
stopping criterion the number of bees could beddigi Namely, if sequential execu-
tion usesB bees for the search, parallel variant executing| gmocessors would be
usingB/q bees only. This way results in sequential BCO acheprocessor, but with
reduced number of bees. This variant is also Oisted BCO, but was referred to as
BBCO since the bees were distributed among processo

Independent runs on different processors allow alsnges of search parameters
and therefore, this parallelization strategy betotggthe multiple walks group. Name-



Namely, once the stopping criteria is reduced edé#ifit values could also be assigned
to the number of bedd and/or to the numbeMC of constructive moves within a sin-
gle forward pass for each BCO executing on differprocessors. Similarly, for
BBCO the number of bees does not have to be eqdislifbuted among processors:
the variant in which for each processor differeminber of bees (between 1 aBfis
assigned with the same value € would provide different searches on different
processors and therefore would represent the rreultiplks parallelization strategy.

The implementation of low level parallelizationat&gy in [16] was named FBCO
and it was based on the following facts. EacHicigl bee acts as an individual agent
during the forward pass when partial solutionsgaeerated. The generation of partial
solution is independent from the rest of the comfioims. This enables the fine level
parallelization (the one from single walk group)ithh the concrete implementation,
in [16] the following scenario appeared: forwardspas executed independently on
different processors while backward pass requigtg toordination between proces-
sors. For the corresponding computations withirklbvacd pass it is necessary to have
the information about all generated partial sohgid\evertheless, those computations
could be done either sequentially by a single psoe (master), or spread among all
processors and accompanied by required communicalibis communication is
known to be the main bottleneck of parallel exemutif distributed memory multi-
processor system is used. In that case, it is itapbto reduce both the amount of data
and the number of transfers (messages).

The implementation of FBCO required the authorslééine the relation between
the number of processogsand the number of be& Namely, each processor was
responsible foB/q bees, and therefore, these two numbers shoulivisihe.

There are some other possible parallelization egias that could be applied to
BCO and that belong to the classification propoisefll2]. For example, the bees
could be allowed to perform several forward-backivpasses before initiating com-
munication between processors. During that petmglty could be determined only
with respect to the bees from the same processme @ommunication is initiated,
bees from different processors should have high&ability to be chosen by an un-
committed follower. The other way could be to depelhn architecture dependent
parallelization strategy. For example, within agritopology, a processor communi-
cates only with its neighbors. Therefore, the phdolutions are sent only to the next
processor, and received only from the previousiorthe ring. Again, the decisions
about the loyalty would be made based on incompiggmation. The above men-
tioned parallelization strategies already introdasgnchronous concepts in BCO, but
it could be even more developed within potentitlife research.

The well known performance measures for parallemms arespeed-ups, and
efficiencyE, [9, 42]. They are defined as follows:

best best
= _Tseeq_s E.= _Sq - _TSeeqS (2)
g " % a dTy



Here, steeqSt denotes the execution time of best known sequegig@arithm on a

single processor, whil&, represents the execution time of the parallelrittym ong
processors.

When meta-heuristics are under consideration, gréopnance of parallelization
strategy is influenced also by the quality of fisallution. Namely, meta-heuristics
represent stochastic search procedures (and B@6t @n exception) which may not
result with a same solution even in repeated segl@xecutions. On the other hand,
parallelization may assure the extension of thecbespace which could yield to both
improvement or degradation of the final solutiorelity. Therefore, the quality of
final solution should also be considered as a peatamof parallelization strategy
performance.

4 BCO Applications

4.1 Solvingthe Traveling Salesman Problem by BCO

Luci¢ and Teodorovi [29, 30, 31] tested the Bee Colony Optimizatiopragch in
the case of Traveling Salesman Problem (TSP). Télelkmown Traveling Salesmen
Problem is defined in the following way: Givemodes, find the shortest itinerary that
starts in a specific node, goes through all otloefels exactly once and finishes in the
starting node.

When solving the TSP problem the authors were déseloping the BCO algo-
rithm and it had more similarities with the behavad bees in the nature, than the
recent version of algorithm. The main differencéngen these two versions is in the
fact that hive had an important role in the presiome. The hive had specified loca-
tion that could also be changed during the searcbegs. The other difference is that
not all the bees are engaged at the beginningeot#arch process. Tiseoutbees
start the search, and at each stage new bee$ [imecruiting process.

In [29, 30, 31] the authors locate hive at randaxdenand decompose the TSP
problem into stages. At each stage (correspondinibe forward pass of BCO), a bee
chooses the new nodes to be added to the paraaklimng Salesman tour created so
far. This selection was performed in random manvigr certain probabilities. Lti¢
and TeodoroWi [29, 30, 31] proposed Logit-based model for calting the probabil-
ity of choosing next node to be visited. Logit mbideone of the most successful and
widely accepted discrete choice model [34]. Wheleutating this probability, the
proposed model took into account the distance l&twerrent node (and/or hive) and
node-candidate to be visited, the total number exfggmed iterations in a search
process, as well as the total number of bees ilsédéd considered link in the past.
The proposed model was represented by the complgxamplicated formulae, and
was not used in subsequent research by other chsesr

During the backward pass each bee decided whettayandon the generated par-
tial solution (i.e. return to its role of an uncoitted follower) or keep it (i.e. dance to



recruit the hive-mates that would follow it at theginning of the next forward pass).
There existed certain probabilities for these twoices, where bees with higher ob-
jective function value had greater chance to caomtitheir own exploration. Each
follower bee had chosen a new solution from onehef recruiters by the roulette
wheel, where better solutions had higher probabiftbeing chosen for exploration.
After the selection had been made, bees expandrdbpsly generated partial solu-
tions by a predefined number of nodes during the feeward pass, followed by the
second backward pass and return to the hive. Ondkei hive, bees took part in a
decision making process again, thus repeatingekeribed process. These steps were
repeated until complete solutions have been geswerdior each bee the whole TSP
tour was discovered). The authors tried to impritvesolutions obtained by the bees
in current iteration by applying different tour inggement algorithms based &ropt
procedure. Among all generated solutions, the bestwas determined and used to
update the global best. This represented the ersingfe iteration and the next one
started after the hive relocation.

The authors explored the effectiveness of the B&@ targe number of numerical
examples. Here we present the results for benchpratdems that were taken from
the following Internet address:

http://www.iwr.uni-heidelberg.de/iwr/comopt/softvedif SPLIBO5/tsh

All tests were run on an IBM compatible PC with IRitocessor (533MHz). The
obtained results are given in Table 1.

Table 1. TSP benchmark problems: The results obtained &BMO algorithm

Problem No. of Optimal BCO Relative CPU (sec)
name nodes value error (%)

Eil51 51 428.87 428.87 0.00 9 2
Berlin52 52 7544.37 7544.37  0.00 0
St70 70 677.11 677.11  0.00 7
Pr76 76 108159.00 108159.00 0.00 2
Kroal00 100 21285.40 21285.40 0.00 10
Eil101 101 640.21 640.21 0.00 61
Tsp225 225 3859.00 3899.90 1.06 11651
A280 280 2586.77 2608.33 0.83 6270
Pcb442 442 50783.55 51366.04 1.15 4384
Pr1002 1002 259066.60 267340.70 3.19 28101

Results given in the Table 1 show that the BCO g@sed in [29, 30, 31] produced
results of a very high quality. The BCO was capableget the objective function

values equal or very close to the optimal ones. CR& times necessary to discover
the best solutions by the BCO were very low (in B00n other words, the BCO was
able to produce “very good” solutions in a “readdaamount” of computer time.



4.2 Solving the Ride-M atching Problem by BCO

In a lot of countries urban road networks are higldngested. The negative conse-
guences of traffic congestion are enlarged trawedd, bigger number of stops, unan-
ticipated delays, greater travel cost, inconveréetw drivers and passengers, in-
creased air pollution, noise level and number affitr accidents. Growing traffic
network capacities by building more roads is ext&rlgnecostly as well as environmen-
tally devastating. Efficient usage of the existsupply is essential in order to sustain
the growing travel demand. Researchers, planneis,transportation professionals
have developed various Travel Demand ManagemenM(T@chniques. One of the
widely used Travel Demand Management (TDM) techedqgis ridesharing. Within
this concept, two or more persons share vehiclenvireveling from their origins to
the destinations. The operator of the system massgs the following information
regarding trips planned for the next week: (a) \¢kehcapacity (2, 3, or 4 persons); (b)
Days in the week when person is ready to partieifiatride-sharing; (c) Trip origin
for every day in a week; (d) Trip destination fareey day in a week; (e) Desired
departure and/or arrival time for every day in a&kve

The ride-matching problem considered by Teoddr@arid Dell'Orco in [48, 49]
could be defined in the following way: Make routingd scheduling of the vehicles
and passengers for the whole week in such a wayirtonize the total distance trav-
eled by all participants. In [48, 49] the authoeveloped BCO based model for the
ride-matching problem. They started their choicedeidrom the assumption that the
quantities perceived by bees are ‘fuzzy’. They m@artificial bees that use approxi-
mate reasoning and rules of fuzzy logic in theimownication and acting. The main
advantage of using the approximate reasoning afgorfor calculating the solution
component attractiveness was that it made postibtalculate solution component
attractiveness even if some of the input data vesrlg approximately known. If;
denotes the attractiveness value of solution compinthe probabilityp; for solution
component to be added to the partial solution was equah¢oratio off; and the sum
of all considered solution component attractivenedses:

f ©)

In order to choose the next solution componentet@dbded to the partial solution,
artificial bees use a proportional selection knaagn‘roulette wheel selection.” (The
sections of roulette are in proportion to probaietip;). In addition to the ‘roulette
wheel selection,” several other ways of selectionld be used. When adding the
solution component to the current partial solutiming the forward pass, a specific
bee perceives a specific solution component as désactive’, ‘attractive’, or ‘very
attractive’. Artificial bee can perceive a specifittribute as ‘short’, ‘medium’ or
‘long’; ‘cheap’, ‘medium’, or ‘expensive’; etc. Thauthors developed the approximate
reasoning algorithm for calculating the solutiompmnent attractiveness.

In order to describe bee’s partial solutions congear mechanism, the authors in-
troduced the concept of partial solution badnedse Partial solution badness was
calculated in the following way:



L L Linin (4)
Lmax - Lmin
where
L, — represents the badness of the partial soluisnodered by th&th bee;
L® — is the objective function values of the parsialution discovered by theh bee;
Lmin @ndLax denote the objective function value of the bestaprst partial solution
discovered from the beginning of the search process

The approximate reasoning algorithm to determirgsbloyalty to its partial solu-
tion contained the rules of the following type:

If the discovered partial solution is BAD
Then loyalty is LOW

Bees use approximate reasoning, and compare thssiowered partial solutions
with the best, and the worst discovered partialtsmh from the beginning of the
search process. In this way, ‘historical factstdigered by the all members of the bee
colony have significant influence on the futurersbalirections.

Based on the quality of its solution each bee detidith certain probability
weather to stay loyal or became an uncommittedvi@t. Every partial solution (par-
tial path) that was being advertised in the damea &ad two main attributes: (a) the
objective function value; and (b) the number ofdbtet were advertising the partial
solution (partial path). The number of bees adsimgi the partial solution was a good
indicator of a bees’ collective knowledge. It showew a bee colony perceives spe-
cific partial solutions. The authors used the apjpnate reasoning algorithm to de-
termine the advertised partial solution attractegs It consisted of the rules of the
following type:

If the length of the advertised path is SHORT
and the number of bees advertising the paBMaALL
Then the advertised partial solution attractiveneddEDIUM

The approximate reasoning algorithm was used toutzte the number of shifting
bees with the rules of the following type:

If bees’ loyalty to patp; is LOW
and pathp; ‘s attractiveness is HIGH
Then the number of shifting bees from palo pathp; is HIGH

In this way, the number of bees flying along a fjpepath is changed before be-
ginning of the new forward pass. Using collectiveWwledge and sharing information
among themselves, bees concentrate on more prgmsgiarch paths, and slowly
abandon less promising paths.

Proposed model was tested in the case of riderghdegmand from Trani, a small
city in the south-east of Italy, to Bari, the ragab capital of Puglia. The authors col-



lected data regarding 97 travelers demanding rideirsg, and assumed, for sake of
simplicity, that capacity is four passengers fdrtlair cars. Fig.6 shows changes in
the best-discovered objective function values thhotine iterations.
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Fig. 6. Changes in the best-discovered objective funataues through the iterations

4.3 Routing and Wavelength Assignment in All-Optical Networ ks Based by BCO

The Routing and Wavelength Assignment (RWA) in @jbtical Networks is the well
known optimization problem in telecommunication.eBv pair of nodes in optical
networks is characterized by a number of requestedections. The total number of
established connections in the network dependsherrduting and wavelength as-
signment procedure. The RWA problem could be deedriin the following way:
Assign a path through the network and a waveleogtthat path for each considered
connection between a pair of nodes in such a wapagimize the total number of
established connections in the network.

Markovi¢ and his coauthors in [33] had successfully solthes problem by the
BCO meta-heuristic. They proposed the BCO heuriatgorithm tailored for the
RWA problem. They called the proposed algorithm B@O-RWA algorithm. The
authors created the artificial network shown in g 7.

The node depicted by the square in the Fig.7 reptesive. At the beginning of
the search process all artificial agents are lacatethe hive. Bees depart from the
hive and fly through the artificial network frometheft to the right. Bee’s trip is di-
vided into stages. Bee chooses to visit one deifitode at every stage. Each stage
represents the collection of all considered oridgistination pairs. Each artificial node
is comprised of an origin and destination linkedabyumber of routes. Lightpath is a
route chosen by bee agent. Bee agent'’s entiret fisgbollection of established light-
paths. The authors determined in advance the nuofbleeesB and the number of
iterationsl as a stopping criteria.

During forward pass every bee visitsstages (bee tries to establistnew light-
paths). That mean§C was set ton wheren was selected in such a way thakm, m
representing the total number of requested lightpa#t every stage a bee chooses
among remaining artificial nodes (not previousljested ones). Sequence of the



visited artificial nodes generated by the bee regmes one partial solution of the prob-
lem considered. Bee is not always successful iabéshing lightpath when visiting
artificial node. Bee’s success depends on the wagéhs’ availability on the specific
links. In this way, generated partial solutiondatiamong themselves according to the
total number of established lightpaths.

Stagem

Hive

Artificial nodem Artificial node m Artificial nodem

m-total number of requested lightpaths
Fig. 7. Artificial network

Probabilityp that specific unvisited artificial node will beaten by the bee equals
1/nynvis Whereny,is is the total number of unvisited artificial nod®&y; visiting spe-
cific artificial node in the network shown in Fightes attempt to establish the re-
quested lightpath between one real source-destmatbde pair in optical network.
Let us assume that the specific bee decided tademthe lightpath request between
the source nodgand the destination nodk In the next step, it is necessary to choose
the route and to assign an available wavelengthgaiioe route between these two real
nodes. In [33] for every node pas, (9, the authors defined a sub$&f of allowed
routes that could be used when establishing thepiagh. These subsets were defined
by using thek shortest path algorithm: For every of thalternative routes the bee’s
utility when choosing the considered route is ciali@d. The shorter the chosen route
and the higher the number of available wavelengtbag the route, the higher the
bee’s utilities are. The authors define the beélgies V' when choosing the route

between the node pas,(d in the following way:

1 W 5
_ 1 g (5)
hr - hr min +1 Wmax

v3d=a



where:

r — the route ordinary number for a node pail, 2,...k, r D{RS"} :
h, —the route length expressed in the number of phiysimas;

h:min —the length of the shortest routg,;

W, —the number of available wavelengths along the route

Wmaxzmag({W} — the maximum number of available wavelengths amat
rOR®

routesr R ;
a —weight (importance of the criteriafl<a< 1.
Bees decide to choose a physical route in optieslaork in a random manner. In-

spired by the Logit model, the authors in [33] &sed that the probabilityprSd of
choosing route in the case of origin-destination pad d) equals:

Vou ®)
OrORM and w, >0

0 Orors and w, =0

Where“:gsd is the total number of available routes between pfainodes §, d. The

router is available if there is at least one available slength on all links that belong
to the route.

After forward pass, bees perform backward passthey return to the hive. In the
hive every bee makes the decision about abanddghngreated partial solution or
expanding it in the next forward pass. The autlemuimed that every bee can obtain
the information about partial solution quality dezh by every other bee. The prob-
ability that the bed would use the same partial tour that is definefbivard passi,
at the beginning of the + 1 forward pass is calculated in the following way

CmaxCb (M
Pp=¢e u

where:

Cy - the total number of established lightpaths fribia beginning of the search
process by the-th bee;

Cmax-the maximal number of established lightpaths frdra beginning of the
search process by any bee;

u - ordinary number of forward pass=1,2,...

Let us discuss Eq. (7) that the authors proposmdre details. Better generated
partial solution (higheCC, value), implies the higher probability that theehaill be
loyal to the previously discovered partial solution. Geedgheordinary number of the
forward pass implies higher influence of the alsediscovered partial solution. This
is expressed by the temmin the nominator of the exponent (Eq. (7)). Inesttvords,
at the beginning of the search process bees aree“bmave” to search the solution
space. The more forward passes they make, thehasesless courage to explore the



solution space. The more we are approaching theoktite search process, the more
focused the bees are on the already known solutions

In [33] the probabilitypp that theP-th advertised partial solution will be chosen by
any of the uncommitted follower was calculated gghre following relation:

eCp (8)

P
>efp
p=1

Pp=

whereCs is the total number of the established lightpaththe case of the-th ad-
vertised partial solution.

The BCO-RWA algorithm was tested on a few numereemples. The authors
formulated corresponding Integer Linear ProgranPjlito determine optimal solu-
tions for the considered examples. They comparedBBO-RWA results with the
optimal solution. The comparison for the consideretivork is shown in the Table 2.

Table 2. The results obtained by comparison of BCO-RWA wiith

Total numberNumber o Number of CPU time [s] Relative
of requested wave- established lightpaths error
light-paths lengths ILP BCO-RWA ILP BCORWA [%]

1 14 14 4 433 0
28 2 23 23 94 458 0

3 27 27 251 4.68 0

4 28 28 313 4.66 0

1 15 14 4 4.73 6.67
31 2 25 25 83 5.00 0

3 30 30 235 5.19 0

4 31 31 1410 5.21 0

1 15 14 14 5.9 6.67
34 2 27 26 148  5.50 3.70

3 33 33 216 5.64 0

4 34 34 906 5.64 0

1 16 15 23 564 6.25
36 2 27 26 325 6.09 3.70

3 34 34 788  6.11 0

4 36 36 1484 6.13 0

1 17 16 16 5.67 5.88
38 2 28 27 247  6.09 3.57

3 35 35 261 6.23 0

4 38 38 1773  6.33 0

1 17 16 31 6.00 5.88
20 2 28 27 491  6.28 3.57

3 35 35 429  6.61 0

4 40 40 1346  6.67 0




From the results presented in Table 2 it can beladed that the proposed BCO-
RWA algorithm has been able to produce optimalaarear-optimal solutions in a
reasonable amount of computer time.

4.4 BCO approach to optimize locations of traffic sensorson highways

The problem of the placement of point detectorgiwiti roadway network belongs
to the field of location theory. Point detectorge aeployed on roadways to collect
traffic data including volume, occupancy, and spdéde data is used by Traffic Man-
agement Centers in cities to manage traffic andlémts and provide information to
motorists about current conditions. The spacingletectors on freeways has a key
impact on the travel time estimates obtained froenreported speeds. There is a tra-
deoff between detector spacing and travel timemedé correctness. As detectors
become more closely spaced, the data obtained fhem more closely look like
continuous data available from probes. This additioaccuracy also comes with
much higher capital and ongoing costs, as all detecequire regular maintenance to
continue to report good data. Transportation agsnare therefore seeking a method
to indicate the most appropriate locations for detedeployment such that the travel
time estimate error is minimized, within the coasits of available capital and main-
tenance funding.

Edara et al. in [20, 44] studied the problem ofimopt placing traffic detectors on
freeways and developed the BCO algorithm to sdiv&hie proposed model tries to
minimize the error in travel time estimation, whikking into account the constraints
of available capital and maintenance funding.

During the forward pass of the BCO algorithm thejit onodel [34] was used
for selection of the potential detector locatioNEwas equal to one). The probability
of a bee choosing a nodeas expressed using the Logit model as follows:

i ©)

n
Selr
r=1

pi =

whereU; represented the utility of having a detector aleio This utility depended
on several factors that may affect travel timenestes. Factors such as the presence of
a natural bottleneck at that location (e.g. a leesuction) that leads to recurring
congestion during the peak traffic periods, his@riaccident likelihoods (to monitor
the induced delays by deploying detectors), levétaific volumes, etc, can be used
to determine the utilities. In [20, 44], it was as®d that all potential detector
locations have equal utilities. Within each forwgakss a bee visited a certain number
of nodes and created a partial solution (choosenfedes that become detector loca-
tions).

Each generated partial solution in [20, 44] wasratterized by the travel time
estimation error. As the criteria for comparisonpaftial solutions, the maximum
travel time error over all travel time runs wasesétd. ByE, the authors denoted the



maximum travel time error over all travel time ringhe case of the partial solution
created by thé-th bee. It was normalized by the following formula
Enax- E 10

0, = —max_—b_ Ope (0l b=12..B (10)

Emax' Emin ,

having that:
O, - was normalized value of the maximum travel timeeover all travel time runs

for the partial solution created by theh bee
Erax: Emin- represented maximum and minimum travel time ewaue over all
partial solutions generated so far.

The probability thab-th bee (at the beginning of the new forward pé&s#)yal to
its previously discovered partial solution was egsed as follows:

Omax-Op (11)
pitl=e u b =12.B

whereu represented the ordinary number of the forward gesy.,u=1 for first for-
ward passy=2 for second forward pass).

A bee that does not want to expand its previouslyegated partial solution would
go to the dancing area of the hive to find anobies(s) to follow. The probability that
b’'s partial solutiorwould be chosen by any uncommitted bee in [20 wst equal to:

Op (12)
R

20
k=1

Pp =

where:
Ok - objective function value of theth advertised solution;

R - the number of recruiters.

The proposed BCO algorithm was tested on a redewiogeway segment in Vir-
ginia. One of the main purposes of developing psepamethodology was to generate
tradeoff plots between the travel time error areliomber of detectors which would
give the optimal placement of detectors for diffeérdevels of available funding.

Tradeoff plots were generated by varying the aatuahber of detectorsl) from 2
to 20 in increments of 1. Results of the BCO ruosnf[44] are shown in Fig.8. For a
given number of detectors, the obtained optimateateent would result in a travel
time estimation error for each travel time run. Thaximum error versus the detector
deployment obtained by the Genetic algorithms (GAglso plotted in Fig.8.

These results enablled savings of 30% as comparézt tcurrent deployment at 20
locations. The obtained results were very competitvhen compared with the results
of Genetic Algorithms achieved in previous study.

The developed method is intended for use at a pigravel, to assist in determin-
ing where to deploy detectors in an area that atlgrdnas few or no detectors, or in
determining which detectors need to be (or thos¢ tieed not be) regularly main-
tained to obtain good travel time estimates in eweith dense detector deployment.
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4.5 Scheduling Independent Tasksby BCO and Parallel BCO

Davidovi et al. [17, 18] applied BCO to the problem of istacheduling of inde-
pendent tasks on identical machines. The problembeadescribed as follows. Let
T H12..n} be a given set of independent tasks, #e{12..m set of identical
machines. The processing time of tagk = 1,2,...n) is denoted by;. All tasks are
mutually independent and each task can be schetluledy machine. All given tasks
should be executed. Task should be scheduled wlgxane machine and machines
can execute one task at a time. The goal is todaieduling of tasks to machines in
such a way as to minimize the completion time bfeadks (the so calleshakespahn

At each iteration of its execution BCO performs stouctive steps composed of
forward and backward passes and within them gessBagolutions (schedules), one
schedule for each bee. Within each forward passyeificial bee is allowed to fly
out from the hive and to generate NC task-machaiespThe probability that specific
bee chooses taskdenoted by, was calculated as follows:

i . (13)

where:

|; — is the processing time of thh task;

K — represents the number of “free” tasks (not ipresly chosen).

Obviously, tasks with longer processing times hhaigher chances to be chosen.
The probabilityp; of choosing machingby any bee equals:



(14)

where:

maxF-F; (15)
ViT e F-ming T h2em

F; - running time of machingbased on tasks already scheduled to it;

maxF, min F - maximum and minimum over all machines runnimnggs.

Machines with a lower value of the running timewéa higher chance to be
chosen. In totalB bees choosB*NC task-machine pairs within each forward pass.
After scheduling tasks to machines the corresp@ndiachines’ running times were
updated.

After the completion of forward pass, all bees metio the hive and backward pass
starts. Bees exchange information about the qualithe partial solutions generated.
The latest time point of finishing the last taskaay machine characterizes each gen-
erated partial solution. Upon obtaining full infaxtion about all partial solutions
generated by all bees, every bee decides whetteyandon the food source and be-
come again uncommitted follower, or dance and tieesuit the hive-mates before
flying again from the hive and thus beginning thewnforward pass. Forward and
backward passes alternate until all bees gendratetiole schedules.

If Cy (b=1, 2,...,B) denotes the latest time point of finishing thstltask at any
machine in the partial solution generated byl#ik bee, ther®, the normalized val-
ue of the time poin€,, was calculated in [17, 18] in the following way:

Crnax = Cp (16)

O, =—mx"~b  p=-12 B
Cmax_cmin

whereC,;, andC,x are respectively the smallest and the largest ficiet among all
time points produced by all bees. The probabiligtb-th bee (at the beginning of the

new forward pass) is loyal to the previously dis@d partial solution is calculated in
this paper in the following way:

Omax-Op a7)
pitl=e U p=12.B

whereu is the ordinary number of the forward pass.

Ones the bee decided to stay loyal to its own gastilution, it is automatically be-
coming a recruiter, i.e. its solution is considetede selected by any uncommitted
bee (Fig. 9). The authors have assumed in [17thE8]the probability the recruitéets
partial solution will be chosen by any uncommittesk equals:



Op (18)

R
20k
k=1

Po =

where:
O - Objective function value of tHeth advertised solution;

R - the number of recruiters.
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Fig. 9. Comparison of partial solutions after third fordi@passNC=1.

Using Eq. (18) and a random number generator, emecpmmitted follower join
one bee dancer (recruiter). Recruiters fly togethigh a recruted hive-mates in the
next forward pass along the path discovered byebruiiter. At the end of this path all
bees are free to independently search the solsfiace.

The proposed algorithm was tested on a varioushmeaik problems. Preliminary
results were presented in [17], while the exhaas@ixperimental evaluations are de-
scribed in [18]. The problem parameters range fimstances wittn = 100 up to the
instances witin = 5000 and fronp = 4 top = 100. The BCO parameters wde 5,
NC = 10. The stopping criterion was the number ofiiens and was equal to 100.

The authors compared the obtained BCO resultstivitloptimal solution obtained
by using ILOG AMPL and CPLEX 11.2 optimization sefire. The comparison re-
sults are illustrated in the Table 3. Within thable, the number of machinas, is
given in the first column, OPT denotes the optimakespan, OPT Time is the value
of CPU time required by CPLEX for solving the capending problem example to
optimality. BCO represents objective function vabl#ained by the BCO algorithm;
BCO error denotes deviation of BCO solution frone thptimum one, BCO time
shows the time required by BCO algorithm to obitdrfinal solution. The BCO algo-
rithm was able to obtain the optimal value of obijexfunction in most of the test
problems. The CPU times required to find the bekit®ns by the BCO were negli-



gible. All tests were performed on Intel Core 2 DOBU E6750 on 2.66GHz with
RAM=8 Gb under Linux Slackware 12, Kernel: 2.6.28&c version 4.1.2.

Table 3. The comparison of the BCO results the optimal daes=5000

m OPT OPT BCO BCO BCO
Time (sec) error % time (sec)
4 6844 1.112 6844 0.000 0.070
8 3422 6.113 3422 0.000 0.209
16 1711 9.786 1711 0.000 0.217
25 1095 30.288 1095 0.000 0.226
50 548 28.561 548 0.000 0.251
100 274 1130.310 277 1.095 0.560

Parallel BCO. The above described implementation represented gterting
point for testing parallelization strategies of B@@thod. In [16] two synchronous
parallelization strategies of BCO were proposece pharallel BCO search was im-
plemented on distributed memory IBM HPC Linux CarsServer+182 Dual Core
Intel Processors on 2.33GHz/1333MHz with 4AMB RAMhétnet 3rd Party e1350
SMC 8848M Switch Bundle. The C programming languagh MP1 communication
library was used.

The proposed parallelization strategies were tested various problem instances,
the same one that have been used in [18]. It alawghors to easily compare sequen-
tial and parallel BCO versions and measuremeri@performance for various paral-
lelization strategies. The representative subsetesff examples has been chosen,
namely the hard test instances from [15] waithriori known optimal solutions and the
largest size examples from [52] that require aiigant CPU time to be solved.

The target architecture for parallelized BCO in][&s homogeneous completely
connected network of processors. One of them igoresble for the communication
with user and is namenchaster It is usually marked as processor 0. The othér
processors are calledorking processorsr slaves Their marks are processor 1 up to
processon-1. Parallel versions of BCO are executing ormgarocessors, i.e. compu-
tations are assigned to master too. Completely exdied topology containing=5
processors is shown on Fig. 10. In the experimprégsented in [16] the number of
processors was changing from 2 to 12.

USEF



Fig. 10. Complete interconnection network @t 5 processors

We present here some of the results for coarsenegtaparallelization strategy
DBCO and for the other cases we just rewedaclusions.

The results of scheduling one of the largest skamples from [52] (with 5000
tasks) on different number of machines are givehahle 4. These instances were not
too hard to be solved by sequential BCO, and eveywere solvable to optimality by
CPLEX within a reasonable CPU time. For all exaraplgithin DBCO parameter
settings were the followind3=5, NC=10 and stopping criterion 1000 iterations.

Table 4. The comparison of the sequential and parallel B@6ylts fom=5000

DBCO

m q OPT DBCO time (sec) S E,
4 1 6844 6844 60.04 1.00 1.00
2 6844 31.83 1.89 0.94
3 6844 21.36 2.81 0.94
4 6844 15.99 3.75 0.94
5 6844 12.76 4.71 0.94
8 1 3422 3422 61.94 1.00 1.00
2 3422 32.70 1.89 0.94
3 3422 21.86 2.83 0.94
4 3422 16.34 3.79 0.95
5 3422 13.07 4.74 0.95
16 1 1711 1711 65.65 1.00 1.00
2 1711 34.77 1.89 0.94
3 1711 23.20 2.83 0.94
4 1711 17.38 3.78 0.94
5 1711 13.89 4.73 0.95
25 1 1095 1095 69.75 1.00 1.00
2 1095 37.12 1.88 0.94
3 1095 24.76 2.82 0.94
4 1095 18.50 3.77 0.94
5 1095 14.12 4.70 0.94
50 1 548 548 81.03 1.00 1.00
2 548 43,51 1.86 0.93
3 548 29.04 2.79 0.93
4 548 21.73 3.73 0.93
5 548 17.41 4.65 0.93
100 1 274 277 104.46 1.00 1.00
2 277 65.39 1.85 0.93
3 277 37.54 2.78 0.93
4 277 28.21 3.70 0.93
5 277 22.56 4.63 0.93

The first column of the Table 4 contains the numbef machines within each ex-
ample. The number of parallel processgrsxecuting DBCO is given in the second



column of our tables. Optimal schedule length regnés the content of column three,
while lengths of schedules obtained by DBCO fofedéntq are placed in the next
column. Column five in both tables contains CPUetirequired by DBCO to com-
plete 1000 iterations, actually the CPU time reegliby q processor to complete
10004 iterations. The corresponding spee@ynd efficiencyE, are given in the last
two columns. It is important to note that the CRetrequired by DBCO to complete
all necessary computations is actually the CPU tifhéhe processor that is the last
one to finish its work, i.e. it is equal to the rmaxm of all processors' running times.
Actually, in the resulting tables we put the bestained schedule length and the long-
est required CPU time.

Since for the calculation of the speedup and efficy, “the best sequential algo-
rithm” is required, in [16] it was assumed that B&Gm [17, 18] can take the role of
the best sequential algorithm. To assure fairnésbmined results, parallel versions
of BCO were compared with the original sequentiz executed on a single proces-
sor of given parallel architecture (instead of falaersion executed fag=1).

As can be seen from the results presented in TaBIBCO applied to those exam-
ples shows very good performance, almost lineaedyye and above 90% efficiency,
and also the stability in the solution quality fihés no degradation in parallel execu-
tion). In some other examples parallelization, 8otuquality was changing, the au-
thors reported improvements or degradations o$tihation quality for less than 3%.

When testing BBCO the authors obtained excellempédinar) speedup and effi-
ciency, due to the reduction of computations agsign each processor. On the other
hand, FBCO resulted in slowing down the computatidne to the communication
delays caused by intensive data exchange betwesegsors. This strategy is obvi-
ously more suitable for shared memory multiprocesgstems.

5 Conclusion

The Bee Colony Optimization, one of the newer Swénmtelligence technique, is a
meta-heuristic inspired by the foraging behaviohofeybees. It represents a general
algorithmic framework applicable to various optiatibn problems in management,
engineering, and control, and it should alwayddilered for a specific problem. The
BCO method is based on the conceptadperation which increases the efficiency of
artificial bees and allows achievement of goals doauld not be reached individually.
The BCO has the capability, through the informageohange and recruiting process,
to intensify the search in the promising regionshefsolution space. When it is neces-
sary, the BCO can also diversify the search. Resdubees "fly together" with the
recruiter along the path already generated by déoeuiter. This means that partial
solution generated by the recruiter is associate@i€éd) to recruited bees also. When
they reach the end of the path, they are free teraa individual decision about the
next constructive step to be made. The freedomatkenan individual decision consti-
tutes a diversifying element that complements #a&ch intensification in the promis-
ing regions.



The BCO has already been successfully appliedveraecombinatorial optimiza-
tion problems, and we hope that expanded applicatéports are to come soon.
Moreover, the suitability for parallelization ofelBCO algorithm opens not only a
new research direction but also some new poteagiplications. However, the BCO
has not been widely used for solving real-life peotis and theoretical results support-
ing BCO concepts are still missing. This work icegsary in the future research.
Based on the achieved results and gained experieeee models founded on BCO
principles (autonomy, distributed functioning, seffanizing) are likely to signifi-
cantly contribute to solving complex engineering@rmagement, and control problems.
Yet, the most important direction of the futureemsh is the mathematical validation
of the BCO approach. In years to come, the autbgpgct more BCO based models,
examining, for instance, bees’ homogeneity (homogsrvs. heterogeneous artificial
bees), various information sharing mechanisms, \eamibus collaboration mecha-
nisms.
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