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Abstract. Swarm Intelligence is the part of Artificial Iniglence based on study of
actions of individuals in various decentralized tegss. The Bee Colony
Optimization (BCO) metaheuristic has been introduéairly recently as a new
direction in the field of Swarm Intelligence. Artilal bees represent agents, which
collaboratively solve complex combinatorial optiatibn problem. The chapter
presents a classification and analysis of the tesathieved using Bee Colony
Optimization (BCO) to model complex engineering am@hagement processes. The
primary goal of this chapter is to acquaint readeith the basic principles of Bee
Colony Optimization, as well as to indicate potehtBCO applications in
engineering and management.

1 Introduction

Many species in the nature are characterized bymsveehavior. Fish schools, flocks of
birds, and herds of land animals are formed asultrefbiological needdo stay together.
Individuals in herd, fish school, or flock of birdgs a higher probability to stay alive,
since predator usually assault only one individéaktollective movement characterizes
flocks of birds, herds of animals, and fish schoelsrds of animals respond quickly to
changes in the direction and speed of their neightfwarm behavior is also one of the
main characteristics of social insects (bees, waspss, termites). Communication
between individual insects in a colony of sociaseots has been well known. The
communication systems between individual insectdrdmute to the configuration of the
“collective intelligence” of the social insect @olies. The term “Swarm intelligence”,
that denotes this “collective intelligence” haswminto use [1], [2], [3], [4].

Swarm Intelligence [4] is the part of Artificial telligence based on study of actions of
individuals in various decentralized systems. Theseentralized systems (Multi Agent
Systems) are composed of physical individuals @®bdor example) or “virtual”
(artificial) ones that communicate among themselee®perate, collaborate, exchange
information and knowledge and perform some taskkeir environment.



The Bee Colony Optimization (BCO) metaheuristic, [@], [7], [8], [9] has been
introduced fairly recently by Ldi¢ and Teodorovi as a new direction in the field of
Swarm Intelligence. The BCO has been successfpipfied to various engineering and
management problems by Teodoro@nd coauthors ([10], [11], [12], [13], [14], [15],
[16], [17]). The BCO approach is a “bottom-up” apach to modeling where special
kinds of artificial agents are created by analogthWwees. Artificial bees represent agents,
which collaboratively solve complex combinatorigitimization problem. The chapter
presents a classification and analysis of the tesghieved using BCO to model complex
engineering and management processes. The pringadyof this paper is to acquaint
readers with the basic principles of Bee Colonyi@zation, as well as to indicate
potential BCO applications in engineering and managnt.

2 Algorithms Inspired by Bees' Behavior in the Naure

The BCO is inspired by bees' behavior in the naflihe basic idedehind the BCO is to
create the multi agent system (colony of artifidieles) capable to successfully solve
difficult combinatorial optimization problems. Tlatificial bee colony behaves partially
alike, and partially differently from bee colonias nature. We will first describe the
behavior of bees’ in nature, as well as other dligars inspired by bee s behavior. Then,
we will describe a general Bee Colony Optimizatiaigorithm and afterwards BCO
applications in various engineering and managementtlems.

In spite of the existence of a large number ofedéht social insect species, and
variation in their behavioral patterns, it is ptdsito describe individual insects’ as
capable of performing a variety of complex task®][The best example is the collection
and processing of nectar, the practice of whichighly organized. Each bee decides to
reach the nectar source by following a nestmate hd® already discovered a patch of
flowers. Each hive has a so-called dance floor areehich the bees that have discovered
nectar sources dance, in that way trying to corvith@ir nestmates to follow them. If a
bee decides to leave the hive to get nectar, dlmsvibone of the bee dancers to one of the
nectar areas. Upon arrival, the foraging bee takiesad of nectar and returns to the hive
relinquishing the nectar to a food storer bee. iAdtee relinquishes the food, the bee can
(a) abandon the food source and become again unittednfollower, (b) continue to
forage at the food source without recruiting thetmates, or (c) dance and thus recruit
the nestmates before the return to the food sodrce.bee opts for one of the above
alternatives with a certain probability. Within tHance area, the bee dancers “advertise”
different food areas. The mechanisms by which #eedecides to follow a specific dancer
are not well understood, but it is considered tHa recruitment among bees is always a
function of the quality of the food source” [18].

Few algorithms inspired by bees’ behavior appeatadng the last decade (Bee
System, BCO algorithm, ABC algorithm, MBO, Bees @édighm, HBMO algorithm,
BeeHive, Artificial Bee Colony, VBA algorithm). Thgear of publication, the names of



the authors, the names of the algorithm, and tbblems studied are shown in the Table
1. In a subsequent section we describe basic plaxbf these algorithms and we show
their potential applications.

Table 1. The algorithms inspired by bees’ behavior
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Year Authors Algorithm Problem studied
1996 Yonezawa and Kikuchi Ecological algorithm Deston of the collective
intelligence based on bees’
behavior
1997 Sato and Hagiwara Bee System (BS) Genetic Algorithm
Improvement
2001 Lui¢ and Teodorovi BCO Traveling salesman problem
2001 Abbas MBO Propositional satisfiability
problems
2002 Luwi¢ and Teodorowi BCO Traveling salesman problem
2003 Lwi¢ and Teodorowi BCO Vehicle routing problem in the
case of uncertain demand
2003 Lui¢ and Teodorowi BCO Traveling salesman problem
2004 Wedde, Farooq, and Zhang BeeHive Routing protocols
2005 Teodorow, and Dell’ Orco | BCO Ride-matching problem
2005 Karaboga ABC Numerical optimization
2005 Drias, Sadeg, and Yabhi BSO Maximum
Weighted Satisfiability Problem
2005 Yang Virtual Bee Algorithm | Function optimizations with the
(VBA) application in engineering
problems
2005 Benatchba, Admane, andBO Max-Sat problem
Koudil
2006 Teodorow, Lucic, BCO Traveling salesman problem an
Markovi¢, and Dell’ Orco a routing problems in networks
2006 Chong, Low, Sivakumar, | Honey Bee Colony Job shop scheduling problem
and Gay Algorithms
2006 Pham, Soroka, Bees Algorithm Optimization of neural network
Ghanbarzadeh, and Koc for wood defect detection
2006 Basturk and Karaboga ABC Numeric function optimization
2006 Navrat Bee Hive Model Web search
2006 Wedde, Timm, and Farooq BeeHiveAlS Routindgquols
2007 Yang, Chen, and Tu MBO Improvement of the MBO
algorithm
2007 Koudil, Benatchba, MBO Partitioning and scheduling
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2007 Quijano and Passino Honey Bee Social Solving optimal resource
Foraging Algorithm allocation problems
2007 Markové, Teodorow, and | BCO Routing and wavelength
Acimovi¢-Raspopovi assignment in all-optical
networks
2007 Wedde, Lehnhoff, B.van | BeeHive Highway traffic congestion
Bonn, Bay, Becker, mitigation
Bottcher, Brunner, Bischer,
Furst, Lazarescu, Rotaru,
Senge, Steinbach, Yilmaz,
and Zimmermann
2007 Karaboga and Basturk ABC Testing ABC algorithm on a set
of multi-dimensional humerical
optimization problems
2007 Karaboga, Akay and Ozturk ABC Feed-forwardrak
networks training
2007 Afshar, Bozorg Haddada, | Honey-bee mating Single reservoir operation
Marin, Adams optimization (HBMO) optimization
algorithm problems
2007 Baykasoglu, Ozbakyr, and| Artificial Bee Colony Generalized Assignment
Tapkan Problem
2007 Teodorowi and Selmi BCO p-Median Problem
2008 Karaboga and Basturk ABC Comparison perforesot
ABC algorithm with the
performances of other
population-based techniques
2008 Fathian, Amiri, and Maroosi Honeybee mating Cluster analysis
optimization algorithm
2008 Teodorowi BCO Comparison performances of
BCO algorithm with the
performances of other Swarm
Intelligence-based techniques
2009 Pham, Haj Darwish, Bees Algorithm Tuning the parameters of a fuzzy
Eldukhr logic controller
2009 Davidow, Selmt and BCO Static scheduling of independent
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tasks on homogeneous
multiprocessor systems




Yonezawa and Kikuchi described collective intellige based on bees’ behavior [19].
Sato and Hagiwara [20] proposed an improved geadgizrithm namedee SystenThe
proposedBee Systenemploys new operations concentratedcrossoverand Pseudo-
Simplex MethodBy computer simulations the authors showed thatBbe Systerhas
better performance than the conventional genegorathm. TheBee Systemroposed by
Sato and Hagiwara [20] can rather be categorize@Geasetic Algorithm than Swarm
Intelligence algorithm.

Abbass [21] developed thBIBO model that is based on the marriage process in
honeybees. The model simulates the evolution oktWoees. The author started with a
solitary colony (single queen without a family) ttte emergence of an eusocial colony
(one or more queens with a family). The model iplied to a fifty propositional
satisfiability problems (SAT) with 50 variables aB#li5 constraints. The proposed MBO
approach was very successfalagroup of fifty hard 3-SAT problems.

Wedde et al [22] developed th&eeHivealgorithm that is also based on honeybee
behavior. The authors introduced the concept ddimg regions. Each foraging region
has one representative node. There are two typageosfts within the BeeHivalgorithm:
short distance bee agents and long distance bewgsa@hort distance bee agents collect
and disseminate information in the neighborhoodeMong distance bee agents collect
and disseminate information to typically all nodés network.

Karaboga [23] developed thertificial Bee Colony(ABQ) algorithm. Karaboga and
Basturk, and Karaboga et. [24], [25], [26] furthenproved and applied th&BC
algorithm to various problems. The authors creatddny of artificial bees composed of
the following agentsemployed bee& bee flying to the food source)nlookers(a bee
waiting on the dance area for making decision mosk a food source) asdouts(a bee
performing random search). In th&®BC algorithm, half of the colony consists of
employed bees. The second part of the colony ispoged of onlookers. Every food
source could be occupied by only one employed ble. employed bee without food
source becomes a scout. TABC algorithm performs search in cycles. Each cycle
consists of the following three steps: (a) Emplopeds fly to the food sources, collect the
nectar and return to the hive. In the hive we mesatheir nectar amounts; (b) Information
on collected nectar amounts are on a disposal ltaréficial bees. Based on this
information, the onlookers select the food sourg¢ey;Chosen bees that become scout
bees fly to the possible food sources. In ARC algorithm, the initial population of the
solutions is generated randomly. In the subseqogeles, the employed bees, and the
onlooker bees probabilistically create a modificas on the initial solutions. Karaboga
and Basturk [24] compared the performances oAfRE algorithm with the performances
of the PSO, PS-EA and GA. Karaboga and Basturk ¢pficluded, “that the proposed
algorithm has the ability to get out of a local miam and can be efficiently used for
multivariable, multimodal function optimization”.afaboga et al. [25] also used the ABC
algorithm to train feed-forward artificial neuraletworks. The authors compared
performances of the ABC algorithm with the backpagation algorithm and the genetic
algorithm. Performed experiments showed thatABE algorithm could be good addition
to the existing algorithms for feed-forward neuratworks training.



Drias et al. [27] studied Maximum Weighted Satisilizy Problem. They proposed the
Bees Swarmptimization(BSQ algorithm. The authors tested their approachhenaell-
known benchmark problems. THBSO outperformed other evolutionary algorithms
especially AC-SAT, an ant colony algorithm for SAT.

Yang et al. [28] developed théirtual Bee Algorithm(VBA) to solve the function
optimizations with the application in engineeringolplems. The simulations of the
optimization of De Jong's test function and Keanewsllti-peaked bumpy function
showed that th&BAis usually as effective as genetic algorithms.

Benatchba et al. [29] applied tMBO algorithm to the Max-Sat problem.

Chong et al. [30] applied honey bees foraging madethe job shop scheduling
problem. The authors presented experimental resuoltgparing the proposed honeybee
colony approach with existing approaches such ascalony and tabu search. The
experimental results showed that the performancthefalgorithm is equivalent to ant
colony algorithms,

Pham et al. [31], [32] proposed population-basearce algorithm called th®8ees
Algorithm (BA). This algorithm also mimics the food foraging heior of honeybees. The
algorithm performs a neighborhood search combinigld random search.

Navrat [33] presented a new approach to web sed@$ed on a beehive metaphor.
The author proposed a modified model of a beefitie. proposed model is simple, and it
describes some of the processes that take plagelirsearch.

Wedde et al. [34] developed a novel security fraomwwhich is inspired by the
principles of Artificial Immune Systems (AIS), fdfature inspired routing protocols.

Yang et al. [35] proposed a faster Marriage in Holzes Optimization (FMBO)
algorithm with global convergence. By the propos@groach, the computation process
becomes easier and faster. The global convergdraacteristic of FMBO is also proved
by using the Markov Chain theory.

Koudil et al. [36] studied partitioning and schedgl in the design of embedded
systems. The authors applied Marriage in honey-Bestgnization algorithm (MBO).

Quijano and Passino [37], [38] developed Heney Bee Social Foraging Algorithm
The proposed algorithm was successfully appliedht® optimal resource allocation
problems.

Wedde et al. [39] proposed decentralized multi-aggmproach (terme8eeJamA)n
multiple layers for car routing. The proposed apptois based on thigeeHivealgorithm.

Afshar et al. [40] applied Honey-bee mating optiatign (HHBMO) algorithm to the
single reservoir operation optimization problems.

Baykasoglu et al. [41] made an excellent surveyhef algorithms inspired by bees’
behavior in the nature. The authors described th#icdal Bee Colony algorithm, and
presented an artificial bee colony algorithm toveoGeneralized Assignment Problem
GAP.

Fathian et al. [42] applied algorithm inspired Beb’ behavior in cluster analysighe
authors proposed a two-stage method. They useebigglhizing feature maps (SOM)
neural network to determine the number of clusterdhe second step, the authors used



honeybee mating optimization algorithm based omi€ans algorithm to find the final
solution.

Pham et al. [43] used thBees Algorithmto tune the parameters of a fuzzy logic
controller. The controller was developed to stabiland balance an under-actuated two-
link acrobatic robot (ACROBOT) in the upright paasit. Simulation results showed that
using theBees Algorithimto optimize the membership functions of the fultmic system
enhanced the controller performance.

3 Bee Colony Optimization (BCO) Algorithm

Luci¢ and Teodorovi [5], [6], [7], [8] were among first who used bagicinciples of
collective bee intelligence in solving combinatboatimization problems. The BCO is a
population-based algorithm. Population aftificial bees searches for the optimal
solution. Artificial bees represent agents, whiclllaboratively solve complex
combinatorial optimization problems. Every artifitibee generates one solution to the
problem. The algorithm consists of two alternatpitasesforward passandbackward
pass In each forward pass, every artificial bee islexpg the search space. It applies a
predefined number of moves, which construct anghrove the solution, yielding to a
new solution. Having obtained new partial solutiothe bees go again to the nest and
start the second phase, the so-called backward pasise backward pass, all artificial
bees share information about their solutions.

Let us consider Traveling Salesman Problem as ampbe. When solving the TSP
problem by the BCO algorithm, we decompose the Pp8&blem into stages. In each
stage, a bee chooses a new node to be addedgartta Traveling Salesman tour created
so far (Figure 1).

irst stage

Second stage

Third stage

Fig. 1. First forward pass and the first backward pass.



First stage

Second stage

Third stage

Fig. 2. Second forward pass

In nature, bees would perform a dancing ceremoimgiwwould notify other bees about
the quantity of food they have collected, and tlaseness of the patch to the nest. In the
BCO search algorithm, the artificial bees publicthe quality of the solution, i.e. the
objective function value. During the backward passgry bee decides with a certain
probability whether to abandon the created parsalution and become again
uncommitted follower, or dance and thus recruit tlestmates before returning to the
created partial solution (bees with higher objexfiunction value have greater chance to
continue its own exploration). Every follower, clsgoa new solution from recruiters
(Figure 3) by the roulette wheel (better solutitiase higher probability of being chosen
for exploration).

<‘> Recruiters
<é> Followers

Fig. 3. Recruiting of uncommitted followers



During the second forward pass (Figure 2), beesamkppreviously created partial
solutions, by a predefined number of nodes, arer dfftat perform again the backward
pass and return to the hive. In the hive, beesnapairticipate in a decision making
process, make a decision, perform third forwardspeatc. The two phases of the search
algorithm, forward and backward pass, are perforntecatively, until a stopping
condition is met. The possible stopping conditiconsld be, for example, the maximum
total number of forward/backward passes, the maximuotal number of
forward/backward passes without the improvemenihefobjective function, etc.

The algorithm parameters whose values need to thprige the algorithm execution
are as follows:

B - The number of bees in the hive
NC - The number of constructive moves during one &dipass

In the beginning of the search, all the bees ar¢hén hive. The following is the
pseudocode of the BCO algorithm:

1. Initialization: every bee is set to an empty salnfi

2. For every bee do the forward pass:
a) Setk=1; //counter for constructive moves in the fard/pass;
b) Evaluate all possible constructive moves;
c) According to evaluation, choose one move usingadhiette wheel;
d) k=k+1;Ifk<NC Go To step b.

3. All bees are back to the hive; // backward pasgssta

Sort the bees by their objective function value;

Every bee decides randomly whether to continuevits exploration and become
a recruiter, or to become a follower (bees withhkigobjective function value
have greater chance to continue its own explorgtion

For every follower, choose a new solution from witers by the roulette wheel;
If the stopping condition is not met Go To step 2;

Output the best result.

3.1 Constructive and Improving BCO variants

A combinatorial optimization algorithm could be obnstructive or improving type.
Constructive approaches start from scratch. With@se approaches the analyst construct
a solution step by step. When doing this, we uguafiply some problem specific
heuristics. On the other hand, improving approadteggn from a complete solution. The



complete solution (possible a feasible one) isdaity generated randomly or by some
heuristics. By perturbing that solution, we try itaprove it. The examples of such
techniques are Simulated Annealing, or Tabu Sedsakil now, the BCO algorithms in
the literature have been constructive. Todaroet al. [16] developed a bee colony
approach for the nurse rostering problem. Theiraggh is the first one that allows both
constructive and improving steps to be applied@rdbined together.

3.2 The Artificial Bees and Approximate Reasoning

Artificial Bees confront few decision-making protrle while searching for the optimal
solution. The next are bees’ choice dilemmas: (Aais the next solution component to
be added to the partial solution? (b) Should theigdasolution be discarded or not? The
greater part of the choice models in the litergtare based on random utility modeling
concepts. These approaches are highly rationaly Hne based on assumptions that
decision makers have perfect information processiagabilities and always act in a
rational way (trying to maximize utility). In orddp present an alternative modeling
approach, researchers started to use less nornth&uees. The basic concepts of Fuzzy
Set Theory, linguistic variables, approximate re#sg, and computing with words have
more sympathy for uncertainty, imprecision, andyliistically expressed observations.
Following these ideas, Teodorévand Dell'Orco [10], [14] started from the assuropti
that the quantities perceived by artificial bees ‘duzzy”. In other words, artificial bees
could also use approximate reasoning and ruleszayflogic in their communication and
acting. When adding the solution component to theenit partial solution during the
forward pass, a specific bee could perceive a fpesolution component as ‘less
attractive’, ‘attractive’, or ‘very attractive’. Walso assume that an artificial bee can
perceive a specific attribute as ‘short’, ‘mediuon’long’ (Figure 4), ‘cheap’, ‘medium’,
or ‘expensive’, etc. The approximate reasoning rélgm for calculating the solution
component attractiveness consists of the rulekeofdllowing type:

If the attributes of the solution component areR¥EGOOD
Then the considered solution component is VERY RACTIVE

The main advantage of using the approximate reagoaligorithm for calculating the
solution component attractiveness is that it issfiids to calculate solution component
attractiveness even if some of the input data wahg approximately known.



Short Medium Long

Time

Fig. 4. Fuzzy sets describing time

4 BCO Applications

4.1 Solving the Traveling Salesman Problem by BCO

The main goal of L&i¢ and Teodorovi [5], [6], [7], [8] research was not to develop a
new heuristic algorithm for the traveling salesmamoblem but to explore possible
applications of Swarm Intelligence (particularlylleotive bee intelligence) in solving
complex engineering and control problems. The tmagesalesman problem is only an
illustrative example, which shows the charactarsstf the proposed concept.didiand
Teodorové [5], [6], [7], [8] tested the Bee Colony Optimigat approach on a large
number of numerical examples. The benchmark probheare taken from the following
Internet address: http://www.iwr.unikheidelberg.de/iwr/comopt/software/TSPLIB95/tsp
The following problems were considered: Eil51.t&grlin52.tsp, St70.tsp, Pr76.tsp,
Kroal00.tsp and a280.tsp. All tests were run onlBM compatible PC with Pl
processor (533MHz). The results obtained are gindrable 2.




Table 2. TSP benchmark problems: The results obtained ®B@®O algorithm

The best valu E(B -0)
Problem Optimal |obtained by th
name value (O) BCO O |cpu (sec
(B)
(%)

Eil51 428.87 428.87 0 29
Berlin52 7544.366 7544.366 0 (
St70 677.11 677.11 0 7
Pr76 108159 108159 0 2
Kroal00 21285.4 21285.4 0 10
Eil101 640.21 640.21 0 61
Tsp225 3859 3899.9 1.06% 116501
A280 2586.77 2608.33 0.83% 6270
Pcb442 50783.55 51366.04 1.15% 438
Pr1002 259066.6 267340.7 3.19% 28101

The solution of the benchmark problem Tsp.225 dlethiby the BCO algorithm is shown

in Figure 5.
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Fig. 5. Solution of the benchmark problem Tsp.225 obtaimgthe BCO algorithm

We can see from the Table 2 that the proposed Bf@@uped results of a very high
quality. The BCO was able to obtain the objectivaction values that are very close to



the optimal values of the objective function. Thees required to find the best solutions
by the BCO are very low. In other words, the BCOsvedle to produce “very good”
solutions in a “reasonable amount” of computer time

4.2. Solving the Ride-Matching Problem by the BCO

Urban road networks in many countries are sevetelygested, resulting in increased
travel times, increased number of stops, unexpedtethys, greater travel cost,
inconvenience to drivers and passengers, incregisqubllution, noise level and number
of traffic accidents. Increasing traffic networkpea&ities by building more roads is
enormously costly as well as environmentally desive. More efficient usage of the
existing supply is vital in order to sustain thewmg travel demand. Ridesharing is one
of the widely used Travel Demand Management (TD&thhiques. Within this concept,
two or more persons share vehicle when travelinoghffew origins to few destinations.
The operator of the system must posses the follpwiformation regarding trips planned
for the next week: (a) Vehicle capacity (2, 3, opersons); (b) Days in the week when
person is ready to participate in ride-sharing;Tidp origin for every day in a week; (d)
Trip destination for every day in a week; (e) Dedideparture and/or arrival time for
every day in a week. The ride-matching problem weted by Teodorodiand Dell’Orco
[10], [14] could be defined in the following way: d&{e routing and scheduling of the
vehicles and passengers for the whole week in aushy to minimize the total distance
traveled by all participants. Teodoréwand Dell'Orco [10], [14] developed BCO based
model for the ride-matching problem. The authosie®@ the proposed model in the case
of ridesharing demand from Trani, a small city ne tsoutheastern Italy. They collected
the data regarding 97 travelers demanding for hdesg, and assumed, for sake of
simplicity, that the capacity is 4 passengers flbrtlzeir cars. Changes of the best
discovered objective function values are showniguie 6.
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Fig. 6. Changes of the best-discovered objective funatanes.



4.3 Routing and wavelength assignment in all-optidaetworks based on the BCO

The BCO metaheuristic has been successfully tg4@din the case of the Routing and
Wavelength Assignment (RWA) in All-Optical NetworKshis problem is, by its nature
similar to the traffic assignment problem. The Hssachieved, as well as experience
gained when solving the RWA problem could be usethé future research of the traffic
assignment problem.

Let us briefly describe the RWA problem. Every pafrnodes in optical networks is
characterized by a number of requested connectibne. total number of established
connections in the network depends on the routimbveavelength assignment procedure.

Routing and wavelength assignment (RWA) problenaliroptical networks could be
defined in the following way: Assign a path throupk network and a wavelength on that
path for each considered connection between agbpaiodes in such a way to maximize
the total number of established connections imttevork.

Markovi¢ et al. [12] proposed the BCO heuristic algorithalored for the RWA
problem. They called the proposed algorithm the BRMWA algorithm. The authors
created the artificial network shown in the FigireThe node depicted by the square in
the Figure 7 represents hive. At the beginnindiefdearch process all artificial agents are
located in the hive. Bees depart from the hive #@ynthrough the artificial network from
the left to the right. Bee’s trip is divided inttages. Bee chooses to visit one artificial
node at every stage. Each stage represents thectomil of all considered origin-
destination pairs. Each artificial node is comptiséan origin and destination linked by a
number of routes. Lightpath is a route chosen by &gent. Bee agent’s entire flight is
collection of established lightpaths. The authoetetmined in advance the number of
beesB and the number of iteratiohs
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Fig. 7. Artificial network

During forward pass every bee visitstages (bee tries to establisimew lightpaths).
In every stage a bee chooses one of the previoaslyisited artificial nodes. Sequence
of then visited artificial nodes generated by the beeasgnts one partial solution of the
problem considered. Bee is not always successfabiablishing lightpath when visiting
artificial node. Bee’s success depends on the \eaghs’ availability on the specific
links. In this way, generated partial solutionsfatifamong themselves according to the
total number of established lightpaths.

After forward pass, bees perform backward pass,tley return to the hive. The
number of noder to be visited during one forward pass is prescrimgthe analyst at the
beginning of the search process, such tkam, wherem is the total number of requested
lightpaths.

Probability p that specific unvisited artificial node will be asen by the bee equals
1/ny, Whereny, is the total number of unvisited artificial noddy visiting specific



artificial node in the network shown in Figure 7ebeattempt to establish the requested
lightpath between one real source-destination madein optical network. Let us assume
that the specific bee decided to consider the pigtit request between the source ngde
and the destination nodk In the next step, it is necessary to choose dlgerand to
assign an available wavelength along the route dx@twthese two real nodes. In this
paper, we defined for every node pair g, the subseR™ of allowed routes that could be
used when establishing the lightpath. We definegbaéhsubsets by using tkeshortest
path algorithm. We calculated for every of thalternative routes the bee’s utility when
choosing the considered route. The shorter theechosute and the higher the number of
available wavelengths along the route, the higherliee’s utilities are. We define the

bee’s utilitiesV** when choosing the routebetween the node pas,(d in the following
way:

1)
VAR a_* +(1-a) W
hr - I”!min +1 W

max

where:
r — the route ordinary number for a node pail, 2,....k r D{RSd}

h, —the route length expressed in the number of phlykmas,
hrmin — the length of the shortest route
W, —the number of available wavelengths along the rgute

W .. = madx{V\(} — the maximum number of available wavelengths ayralhthe routes
rOR®

r OR™
a —weight (importance of the criteriafl<a<1

Bees decide to choose a physical route in optieddark in a random manner. Inspired

by the Logit model, Markovi et al. [12] assumed that the probabili[yrSd of choosing
router in the case of origin-destination pasr ¢) equals:

Vsd (2)
evr sd
R OrOR* and w,) 0
Py v
i=1
0 OrOR and w, =0

Where“:fd is the total number of available routes between glanodes ¢, d. The route

r is availlable if there is at least one availablev@langth on all links that belong to the
router.



In the hive every bee makes the decision aboutddrang the created partial solution
or expanding it in the next forward pass. The agtlassumed that every bee can obtain
the information about partial solution quality deghby every other bee. They calculated
the probability that the bele will at beginning of theu + 1 forward pass use the same
partial tour that is defined in forward pasm the following way:

_Cmax_Cb (3)
P,=€ u
where:
C, - the total number of established lightpaths frdm beginning of the search

process by the-th bee

Cnax - the maximal number of established lightpaths framheginning of the search
process by any bee

u - ordinary number of forward pass=1,2,...,U

Markovi¢ et al. [12] calculated the probabilipg that theP-th advertised partial solution
will be chosen by any of the uncomitted followemngsthe following relation:

eCP (4)

)
Cp
;e

where Cp is the total number of the established lightpathsthie case of thd>-th
advertised partial solution.

Pe=

The BCO-RWA algorithm was tested on a few numerieahmples. The authors
formulated corresponding Integer Linear PrograniPjland discovered optimal solutions
for the considered examples. In the next step, tueypared the BCO-RWA results with
the optimal solution. The comparison for the coeséd network is shown in the Table 3.

Table 3. The results comparison

Total numberfNumber o Number of CPU time
of requested| wave- |establishd lightpaths s] Relative error [%)]
light-paths | lengths | ILP |BCO-RWA| ILP BCO-RWA
1 14 14 4 4.33 0
o8 2 23 23 94 4.58 0
3 27 27 251 4.68 0
4 28 28 313 4.66 0
1 15 14 4 4.73 6.67
31 2 25 25 83 5.00 0
3 30 30 235 5.19 0




4 31 31 1410 5.21 0
1 15 14 14 5.19 6.67
34 2 27 26 148 5.50 3.70
3 33 33 216 5.64 0
4 34 34 906 5.64 0
1 16 15 23 5.64 6.25
36 2 27 26 325 6.09 3.70
3 34 34 788 6.11 0
4 36 36 1484 6.13 0
1 17 16 16 5.67 5.88
38 2 28 27 247 6.09 3.57
3 35 35 261 6.23 0
4 38 38 1773 6.33 0
1 17 16 31 6.00 5.88
40 2 28 27 491 6.28 3.57
3 35 35 429 6.61 0
4 40 40 1346 6.67 0

We can see from the Table 3 that the proposed B@@:Rlgorithm has been able to
produce optimal, or a near-optimal solutions ierasonable amount of computer time.

4.4 Scheduling Independent Tasks by the BCO

Davidovic et al. [17] studied the problem of static schealof independent tasks on
homogeneous multiprocessor systems. The studidalgmnois solved by the BCO. The
authors considered the following problem. Lé’t:{lz...,n} be a given set of

independent tasks, anﬁ={l2,..m} set of identical processors. The processing tifne o

taski (i = 1,2,...n) is denoted by;. All tasks are mutually independent and each task
be scheduled to any processor. All given tasks ldhbe executed. Task should be
scheduled to exactly one processor and processor&xecute one task at a time. The
goal is to find scheduling of tasks to processarsuch a way as to minimize the
completion time of all tasks (the so call®@kespah

The considered scheduling problem could be graphicmpresented by Gantt
diagram (Figure 8).
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Fig. 8. Gantt diagram: Scheduled tasks to processors

The horizontal axis in the diagram represents tifie rectangulars in the Gantt diagram
represent tasks. The starting time of a task ierdehed by the completion times of all
tasks already scheduled to the same processotofdieompletion time for the schedule
shown in the Figure 8 equals 40 time units (the petion time of task 8 scheduled to
processor 1). Any schedule that has completion tase than 40 time units is considered
better. The goal is to discover the schedule oksta® processors that has shortest
completion time.

Let us briefly describe the main results achievgdavidovi et al. [17]. The authors
decomposed considered problem in stages. Thetdgktto be chosen represents the first
stage, the second task to be chosen represensetbad stage, the third task represents
the third stage, etc. They denotedppyhe probability that specific bee chooses task
The probability of choosing taslequals:

P = — =1,2...n ©®)

where:
i - processing time of thieth task;

K -the number of “free” tasks (not previoushosen).

Obviously, tasks with a higher processing time havegher chance to be chosen. Using
relation (6) and a random number generator, wedsgbdask to bee. Let us denotepy
the probability that specific bee chooses procgsdavidovic et al.[17] assumed that the
probability of choosing processpequals:



Vi (6)

P = =1,2....m
Svi
k=1
where:
maxF — F ; 7
= TF i=1,2,....m @

" maxF -minF
F; - running time of processpbased on tasks already scheduled to it;
maxF- maximum over all processors running times;
min F - minimum over all processors running times.

Processors with a lower value of the running titmage a higher chance to be chosen.
Using relation (6) and a random number generatersehedul processor to previously
chosen task. In totaB bees choos&*NC task-processor pairs after the first forward
pass. After scheduling tasks to processors we agatatessors’ running times.

All bees return to the hive after generating theiglasolutions. All these solutions are
then evaluated by all bees. (The latest time pafifinishing the last task at any processor
characterizes every generated partial solution).usedenote by £(b=1, 2,...,B) the
latest time point of finishing the last task at gamgcessor in the partial solution generated
by theb-th bee. We denote by, normalized value of the time poi@, i.e.:

Crax = Cp (8)

0,=—mx" b p=-12 B
Cmax_cmin

whereC,,i, andC,,.xare respectively the smallest and the largest ftiaiet among all time
points produced by all bees. The probability thah bee (at the beginning of the new
forward pass) is loyal to the previously discovepettial solution is calculated in this
paper in the following way:

_OnaxS (9)
pifl=e v b=12.B

whereu is the ordinary number of the forward pass.

Within the dance area the bee-dancers (recruitats)ertise” different partial solutions.
We have assumed in this paper that the probalfii@yecruitet’s partial solution will be
chosen by any uncommitted bee equals:



D, = Op (10)

b~ R
Yo
k=1

where:
Ok - objective function value of tHeth advertised solution;
R - the number of recruiters.

Using relation (10) and a random number gener&wery uncommitted follower join
one bee dancer (recruiter). Recruiters fly togethigh a recruted nestmates in the next
forward pass along the path discovered by the itecré\t the end of this path all bees are
free to independently search the solution space.

The proposed algorithm was tested on a variousptestiems. We denote respectively
by NT, and NP the number of tasks and the number of processis. problem
parameters range from instances With = 10 up to the instances witiT = 50. In all
cases we sellP = 4. The algorithm parameters whose values neduktset prior the
algorithm execution are as follows: The total numbgbeesB engaged in the search
process was equal to 10; The number of moves (gtatbrtask-processor pairB)C
during one forward pass was equal to 1; The nurobéerationsl within one run was
equal to 100.

The authors compared the obtained BCO results with optimal solution. The
comparison results are shown in the Table 1. Withintable, BCO represents objective
function value obtained by the BCO algorithm; OP@nates the optimal makespan
obtained by using ILOG AMPL and CPLEX 11.2 optintiea software; CPU time shows
the time required by BCO algorithm to obtain thetimpl solution; | stands for the
number of iteration until optimal solution was rbad.

Table 4. The comparison of the BCO results with objectiuaction optimal values for medium
problems NT=50, NP=4)

Test BCO OPT BCO I
problem time
(sec)
1t50 70 212 212 1.0776 5
1t50 80 196 196 0.5637 1
1t50 80_1 234 234 1.1848 4
[t50 80_2 337 337 1.7368 8
1t50 80_3 216 216 0.8077 3
1t50 80_4 276 276 0.7472 2
1t50 80_5 128 128 0.8814 4
1t50 80_6 167 167 1.8514 8




The BCO algorithm was able to obtain the optimaligaf objective function in all test
problems. The CPU times required to find the bekit®ns by the BCO are acceptable.
All the tests were performed on AMD Sempron (tmpdssor with 1.60 GHz and 512
MB of RAM under Windows OS.

5. Conclusion

The Bee Colony Optimization is the youngest Swantelligence technique. It is a meta-
heuristic motivated by foraging behavior of honegdelt represents general algorithmic
framework that can be applied to various optim@atiproblems in management,
engineering, and control. This general algorithfneanework should be alwaysilored
for a specific problem. The BCO approach is basadthee concept otooperation
Cooperation enables artificial bees to be moreciefit and to achieve goals they could
not achieve individually. The BCO has the capahilihrough the information exchange
and recruiting process, to intensify the searclthim promising regions of the solution
space. When it is necessary, the BCO can alsodiiy¢he search. The BCO has not been
widely used for solving real-life problems. There ao theoretical results in this moment
that could support BCO concepts. Usually, develanod various Swarm Intelligence
approaches was based on experimental work in listéaye. Good experimental results
should motivate researchers to try to produce stireeretical results in future research.
Preliminary results have shown that the developnodnbhew models based on BCO
principles (autonomy, distributed functioning, setfjanizing) could probably contribute
significantly to solving complex engineering, maeamgnt, and control problems. In years
to come, one could expect more BCO based models.

The most important aspect of future research isnthéhematical justification of the
BCO technique. The other interesting aspects of fthhere research could be bees’
homogeneity (homogenous vs. heterogeneous artifieis), various information sharing
mechanisms, and various collaboration mechanisms.
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